

    
      
          
            
  [image: The robot future of terminals.]

Welcome to Terminator’s documentation!

Sometimes it is not always
clear just how many little shortcuts and features there are in Terminator. This
manual hopes to reduce the confusion.

A quick word on style. I have none. 😃 I have  casual way of talking and writing,
and a strange sense of humour. I also tend to use random pop-culture references
a lot, but often in ways that make no sense. If this is a problem you are
entitled to a refund of the money you paid to me to write this... 😎


What is Terminator

At its simplest Terminator is a terminal emulator like xterm, gnome-terminal,
konsole, etc. At its most complex it lets you fly... metaphorically at least.
Take a look at the following list:


From the simple...

[image: _images/small_example.png]



	Arrange terminals in a grid-like structure

	Tabs

	Drag and drop re-ordering of terminals

	Lots of keyboard shortcuts

	Save multiple layouts and profiles via GUI preferences editor

	Simultaneous typing to arbitrary groups of terminals

	Extensible through plugins



and lots more...


To the ridiculous...

[image: _images/large_example.png]
In case it’s not obvious this is faked up. I use more complex setups,
but I’m not putting real work into the documentation.




Contents:


	Licensing

	Document history

	Getting Started
	The Context Menu

	Navigating around

	Changing the current layout

	Resetting the terminal

	The scrollbar and scrollback buffer

	Search the buffer

	Zooming the terminal

	Setting Titles

	Insert terminal number

	Next/Prev profile





	Preferences Window
	Global

	Profiles

	Layouts

	Keybindings

	Plugins

	About





	Layouts and the Layout Launcher
	The Layout Launcher





	The Grouping Menu
	Manipulating terminal groups

	Broadcasting input to multiple terminals

	Insert terminal number





	Plugins
	Included plugins

	Third party plugins

	Installing a plugin

	Creating your own plugins





	Advanced Usage
	Command line options

	The Config file

	Debugging

	DBus

	Remotinator





	Frequently Asked Questions
	Why...

	How do I...





	Getting involved
	Translations

	Improve icons/artwork

	Terminator action shots

	Manual updates

	Testing

	Bugs

	Plugins

	Main Application Development

	GTK2 Maintenance

	GTK3 Port

	Docs for Devs















          

      

      

    

  

    
      
          
            
  [image: OK, so it's meant to be a certificate... yeah, I suck at drawing.]

Licensing

The Terminator Application is written and distributed under the
terms of the GNU GPL v2 licence [https://gnu.org/licenses/old-licenses/gpl-2.0.html]. Please note that it is not v2+.

For specifics of any included Plugins please see the Plugins
page.

The ConfigObj library was sourced from voidspace.org.uk [http://www.voidspace.org.uk/python/index.shtml], and
is licensed under the BSD 3-Clause licence [http://opensource.org/licenses/BSD-3-Clause], as stated here [http://www.voidspace.org.uk/python/license.shtml].

Man pages and Misc documents have no explicitly different
licensing, so it is assumed that they fall under the applications
GNU GPL v2 licence [https://gnu.org/licenses/old-licenses/gpl-2.0.html] insofar as it can be said to apply to
non-source code files.

The main Terminator icon was created by Cory Kontros, and
provided under the CC-BY-SA licence [http://creativecommons.org/licenses/by-sa/4.0/].

This Manual and API documentation are wholly new pieces
created by the current maintainer Steve Boddy, and are distributed
under the CC-BY-SA licence [http://creativecommons.org/licenses/by-sa/4.0/], as are the horrific attempts by yours
truly at using Cory’s icon to provide page identities.

The Documentation Theme  is the Read The Docs [https://readthedocs.org/] theme by Dave
Snider, which is distributed under the MIT licence [https://github.com/snide/sphinx_rtd_theme/blob/master/LICENSE]. The theme is
available on GitHub [https://github.com/snide/sphinx_rtd_theme].





          

      

      

    

  

    
      
          
            
  [image: Every'ding come from de Greek!]

Document history

Documentation process started 2015-07-17 by Stephen Boddy.

All contributions and improvements are welcome.









	Updated for
	Date
	Author / Editor
	Notes




	0.97, r1598
	2015-08-07
	Stephen Boddy
	Initial creation              



	0.97, r1621
	2015-08-21
	Stephen Boddy
	Minor changes/corrections     

Added links to dev docs       



	0.98
	2015-08-26
	Stephen Boddy
	Stick a fork in it, it’s done 



	0.98, r1663
	2015-09-30
	Stephen Boddy
	Add the new PuTTY paste mode  

Add new Remotinator commands  

FAQ for other Terminator      

Add Bug handling flow         

Minor changes/corrections     



	0.98, r1667
	2015-10-01
	Stephen Boddy
	Add the new Smart copy mode   



	1.91, r1759
	2017-03-29
	Stephen Boddy
	Updates for the GTK3 Port     



	1.92
	2017-??-??
	Stephen Boddy
	Updates for 1.92 release      



	2.0
	2017-??-??
	Stephen Boddy
	Updates for 2.0 release       







Note

Ideally this documentation should be kept up-to-date with
the changes as they go in. This way things don’t get missed.
There could be some lag between releases, but it should
definitely be updated for a new release.







          

      

      

    

  

    
      
          
            
  [image: Because this is the symbol learner drivers use in the UK.]

Getting Started

This page is an introduction and tutorial that will get you familiar
with Terminator’s features. Additional functional areas are explored
in other pages, but at the end of this page you’ll be getting a good
idea of the power of Terminator.

When you first start Terminator you will get a default, minimal window,
looking something like the following:

[image: _images/basic_window.png]
There may be some cosmetic differences, but it should look fairly
similar. It may in fact look a little too minimal to some of you, but
this is a deliberate policy. Keep the focus on the terminal, not on a
cluttered interface. This is why we don’t waste space on a traditional
menu bar and toolbar. Even the terminal scrollbar and titlebar (the
red strip) can be turned off, although you do lose ease-of-access to
some of Terminators more powerful features if you do.

Many functions are triggered with keyboard shortcuts. But mousers aren’t
completely abandoned. Lets look again at the basic interface, but with
the two primary menus showing:

[image: _images/window_breakdown.png]

Note

You will never see a window that looks like this, as it is
impossible to have both menus up at the same time.




	The Context Menu -
This is the main menu reached with right-click over a terminal, and
will let you access all the settings, profiles, shortcuts and
configurations. It is however kept brief to avoid the mega-menus that
sometimes grow unchecked.



	The Grouping Menu -
This is reached with a click on the trio of coloured boxes in the
titlebar. Later, when we cover Grouping and broadcasting to multiple
terminals we will cover this properly. For now it is enough to know
where it is and how to trigger it.


Note

By default titlebars are shown. If the titlebar has been
hidden The Grouping Menu functions will be added as a
sub-menu to The Context Menu.








The Context Menu

The context menu is split into five parts. The first part is the standard
Copy and Paste for text that has been highlighted with the mouse. There
are shortcuts too:







	Action
	Default Shortcut




	Copy
	Shift+Ctrl+C


	Paste
	Shift+Ctrl+V





The second section is where the fun starts. Split Horizontally and Split
Vertically are used to divide the current space for the current terminal
half. Your original terminal takes the top/left half, and a new terminal
is started and placed in the right/bottom half. You can repeat this as
often as you wish, sub-dividing down until the terminals are completely
impractical. Here’s a window that is split Horizontally, Vertically, and
Horizontally again:

[image: _images/split_window.png]

Note

People sometimes raise the ambiguity of the terminology used,
and disagree as to which way round Horizontal and Vertical are
used. It has been the way it is for a very long time. Changing
it now will just confuse existing users, so I won’t be changing
it. Besides, I happen to agree with the way round it is. So deal
with it. 😎



Between the terminals you can see a space that is a splitter grab handle.
You can grab these and drag them, and the terminals will resize. In this
way Terminator acts a lot like a tiling window manger. It lets you arrange
many terminals in a single view, allowing adjustments as your needs change.

The last item in this part of the menu is to Open tab. This will give
you a tab like most other terminal programs. Unlike most other terminals,
in Terminator you can also split the terminals in each tab as often as you
like.


Note

The same effects could have been achieved with shortcuts, and is the case for most actions.



The third part of the menu will Close the current terminal. It’s on
its own to prevent accidents.

The entries in the fourth part allow you to temporarily focus on one
terminal. Zoom terminal will zoom into the current terminal hiding all
other terminals and tabs, and increasing the the size of the font. This can
be handy to eliminate distractions, give yourself a bit more space for the
current task, or even when giving presentations or training. Maximise
terminal is almost identical, except that it does not increase the size of
the terminal font.

When you are zoomed or maximised it is not possible to split terminals,
or create new tabs, so the entries for those actions disappear from
the menu. So too do the zoom and maximise options, and in their place is
a Restore all terminals entry. This will take you back to your windows
original layout, and restore the font size if necessary.


Warning

An outstanding issue is that sometimes the font size
selected when zooming in can be a bit extreme. You can use
Terminal zooming to increase and
decrease the font size if this happens. This will not
affect the restored font size.



The fifth part of the menu has three items. Show scrollbar will toggle
the scrollbar on a per terminal basis. There is also a way to define this
in the Profiles. Preferences lets you configure and tune Terminator to
better  suit your needs and is further described here.
Lastly, Encodings will allow you to select a different encoding to the
default of UTF-8.

There are actually additional optional items that can be added to the
menu that will only be shown if you enable those Plugins that
add menu items.




Navigating around

Apart from the obvious of clicking the terminal for focus, there are a number
of shortcuts that will move the focus around:








	Action
	Options
	Default Shortcut




	Move focus
	Up, Down, Left, Right
	Alt+<Arrow>


	Cycle to terminal
	Next, Prev
	(Shift+)Ctrl+Tab


	Focus to terminal
	Next, Prev
	Shift+Ctrl+N/P


	Switch to tab #
	1 to 10
	 


	Switch tab
	Previous, Next
	Ctrl+PgUp/PgDn


	Context menu
	 
	Menu Key


	Help [1]
	 
	F1








	[1]	Although as you’re reading this, I guess you figured that one out!




Once the Context menu is visible, it can be navigated with the arrow keys.


Note

For me the two different sets of next/prev shortcuts are a bit of a
mystery. Something to look into.




Click-able items

[image: _images/plugins_links.png]
Terminator can make strings of text that match a pattern click-able.
The user can perform two additional actions on these when the mouse
pointer hovers over a matched item:


	
	Ctrl+click

	Will try to open the item in a suitable
program depending on what the type of the item is (see below).







	
	right-click

	Will add two entries to The Context Menu:


	Open link - Same as Ctrl+click

The description might be different depending on the type of the
item (see below).



	Copy address - Copies the URL to the clipboard

In some types this may be converted into a different form
depending on what the item represents.













Here are the built-in formats understood:








	URL
	Note
	Made up example, Don’t use!


	news://user@host:port/path
	 
	news://steve@news.example.org:1234/announce


	telnet://user@host:port/path
	 
	telnet://steve@insecure.example.,org:1234


	nntp://user@host:port/path
	 
	nntp://steve@news.example.org:1234/announce


	file://user@host:port/path
	 
	file://steve@localhost/var/log/syslog 

file:///var/log/syslog


	http://user@host:port/path
	+ https://
	http://steve@www.example.org/index.html


	ftp://user@host:port/path
	+ ftps://
	ftp://steve@ftp.example.org/var/log/


	webcal://user@host:port/path
	 
	webcal://steve@webcal.example.org/today


	wwwhostname.domain:port/path
	 
	www-server.example.org/index.html 

www.example.org


	ftphostname.domain:port/path
	 
	ftp-server.example.org/var/log/ 

ftp.example.org


	VoIP


	callto:user:number@path
	 
	callto:steve:0123456789@not/sure/here


	h323:user:number@path
	 
	h323:steve:0123456789@not/sure/here


	sip:user:number@path
	 
	sip:steve:0123456789@not/sure/here


	E-Mail


	mailto:name@host
	 
	mailto:steve@example.org


	News


	news:name@host:port
	 
	news:steve@news.example.org:1234





These are just the ones built-in by default to Terminator. The
Plugins can extend this further with a URL Handler,
although strictly speaking it does not have to be a URL - as can be
seen from some of the above - just a well defined pattern that can be
matched.






Changing the current layout

I’ve already used the term layout a few times in this page already.
I should define what exactly is meant by a layout.

A layout describes the collection of windows in the current process,
the tabs, and how the windows and tabs are divided up into terminals.
It also includes the positions, dimensions, as well as other aspects
related to how Terminator looks.

Besides the items in the The Context Menu there are three main
methods to adjust the layout.


Using the splitters

So, by now you’ve probably made a few splits and used the mouse to drag them
about, and you now have something resembling the following, minus the highlights:

[image: _images/rebalance_01.png]
Terminator lets us rebalance the terminals, equally dividing the available
space between the siblings.

The different highlighting shows the siblings. The key thing to understand is
that the blue splitters are considered siblings, which are children of the
green parent. The green is itself a child of the red parent.  By double-clicking
the splitter, the space will be divided evenly between the siblings. So,
double-clicking any of the blue splitters will give:

[image: _images/rebalance_02.png]
If instead we double-click on the green splitter, we get:

[image: _images/rebalance_03.png]
But there’s more! We can use two modifier keys to rebalance more collections of
siblings. Shift+double-click the splitter and all children,
grandchildren, and so on, will be rebalanced. Super+double-click and
all parents, grandparents, and so, on, will be re-balanced. You guessed it!
Shift+Super+double-click and all visible terminals
will be rebalanced. It will not affect terminals in other windows or tabs.

Shift+double-click on green:

[image: _images/rebalance_04.png]
Super+double-click on green:

[image: _images/rebalance_05.png]
Shift+Super+double-click on green:

[image: _images/rebalance_06.png]

Note

Notice in the last two shots that you can shrink a terminal
to a point where it is unusable or even completely hidden. We
don’t place an arbitrary minimum size. Some people want the
ability to move the splitter all the way.






Dragging and dropping a terminal

There are two ways to drag a terminal from one location to another with in the
window. The simplest is to use the titlebar at the top of each terminal. Simply
click-drag, and you will be able to hover over the other terminals and drop
the dragged terminal to move it:

[image: _images/dragterminal_01.png]
Here you can see a preview of the dragged terminal - scaled if large - and shading
to show which area it will cover, which can be the top, bottom, left or right of
an existing terminal.

The above action results in the following:

[image: _images/dragterminal_02.png]
The other way to drag a terminal can be done from within the terminal with
Ctrl+right-click-drag. With this method once you start the
drag, you must release the Ctrl key before releasing the
right-mouse-button. If you do not the drag will cancel.

You can drag between tabs by initiating a drag and hovering over the tab.
Terminator will switch to the tab under the cursor, you can then drag to the
desired position, and the terminal can be dropped.

You can also drag between Terminator windows provided the windows are part
of the same process. By default all windows will be part of the same process.
Windows will not be part of the same process if you deliberately turn off
the DBus interface with the Preferences or the
Command line options when starting Terminator up. Layouts
are also currently isolated at a process level for technical reasons. - Needs
to be double checked and confirmed.Since the work that got layouts working
over DBus, this may now be wrong.




Using the keyboard

Of course, with Terminator being a terminal application, it makes sense to keep
your hands on the keyboard as much as possible. So there are many shortcuts that
you can tailor to your own preference. Here are the ones that will affect the
layout:








	Action
	Options
	Default Shortcut




	New instance [2]
	 
	Super+I


	New window
	 
	Shift+Ctrl+I


	New Tab
	 
	Shift+Ctrl+T


	Split terminal
	Horizontally, Vertically
	Shift+Ctrl+O/E


	Hide window [3]
	 
	Shift+Ctrl+Alt+A


	Close window
	 
	Shift+Ctrl+Q


	Close terminal
	 
	Shift+Ctrl+W


	Toggle fullscreen
	 
	F11


	Resize terminal
	Up, Down, Left, Right
	Shift+Ctrl+<Arrow>


	Rotate terminals
	(Anti-)Clockwise
	(Shift+)Super+R


	Move Tab
	Left, Right
	Shift+Ctrl+PgUp/PgDn


	Zoom terminal
	 
	Shift+Ctrl+Z


	Maximise terminal
	 
	Shift+Ctrl+X








	[2]	This is a separate process. As such, drag and drop will not work
to or from this new window, or subsequent windows launched using
the Shift+Ctrl+I while the focus is in the
new instance.







	[3]	Hide window will currently only work on the first window of the
first terminator instance that you start. That is because at
present it binds the shortcut globally (it has to, or it cannot
unhide) and this can only be done once. This may change in
future.









Resetting the terminal

There are two shortcuts available for fixing the terminal if it
starts to misbehave.







	Action
	Default Shortcut




	Reset
	Shift+Ctrl+R


	Reset + Clear
	Shift+Ctrl+G








The scrollbar and scrollback buffer

As already mentioned, there is a Context Menu
item to toggle the scrollbar. There is also a shortcut listed here.

In addition there are shortcuts for moving up and down in the
scrollback buffer with more flexibility:








	Action
	Options
	Default Shortcut




	Toggle scrollbar
	 
	Shift+Ctrl+S


	Page [VS]
	Up, Down
	Shift+PgUp/PgDn


	X Lines [VS] [XL]
	Up, Down
	wheelup/wheeldown


	Page [TS]
	Up, Down
	 


	Half page [TS]
	Up, Down
	 


	Line [TS] [MS]
	Up, Down
	 








	[VS]	(1, 2) VTE Shortcuts: Default actions from VTE that are not configurable.







	[XL]	X Lines: Where X may vary depending on distribution. On mine
it is 4.







	[TS]	(1, 2, 3) Terminator Shortcuts: Additional movement options from Terminator
that are configurable.







	[MS]	Masked Shortcuts: VTE provides default shortcuts for line up/down,
on Shift+Ctrl+Arrow Up/Dn, but they are masked
by shortcuts for resizing terminals. You can disable or reassign
the resizing shortcuts to regain access to the VTE default.







Search the buffer

It is possible to search the buffer, although at this time there is
a limitation that the found string is not highlighted.







	Action
	Default Shortcut




	Begin search
	Super+Ctrl+F





Resulting in a search bar at the bottom of the focused terminal:

[image: _images/search.png]
This has buttons for moving back and forward through the results, as
well as an option to wrap the search around.


Note

At this time there is no highlighting of the search string.
This is a historical limitation due to the manner in which
the implmentation was originally done, way back when. I
intend to remove the old code, replacing with the built-in
libvte search function in the 2.1 release. This will then
highlight searched text.






Zooming the terminal

It is possible to zoom into and out of a terminal.
There are also some modifiers to zoom more than just the current
terminal.







	Action
	Default Shortcut




	Target in [4]
	Ctrl++/wheelup


	Target out
	Ctrl+-/wheeldown


	Target reset
	Ctrl+0


	+Receivers in
	Shift+Ctrl+wheelup


	+Receivers out
	Shift+Ctrl+wheeldown


	+Receivers reset
	N/A (TBD, plus in/out)


	All in
	Super+Ctrl+wheelup


	All out
	Super+Ctrl+wheeldown


	All reset
	N/A (TBD, plus in/out)








	[4]	Target terminal is the current terminal when using the
keyboard shortcuts, or the terminal under the mouse when using
the wheelup/wheeldown.







Setting Titles

If you’re anything like me, you’ve spent time clicking among the half a
dozen different terminals in the taskbar, trying to find the right one.
Or maybe for you it is with tabs.

In Terminator you can rename three things:








	Edit
	Mouse
	Default Shortcut




	Window title
	N/A
	Ctrl+Alt+W


	Tab title
	double-click tab
	Ctrl+Alt+A


	Terminal title
	double-click titlebar
	Ctrl+Alt+X





Additionally all three can be saved/loaded from a layout,
or the window title can be set using a
command line option.




Insert terminal number

These shortcuts let you enumerate your terminals. It is handy if you
need to login to a number of sequentially numbered machines. With
multiple terminals the ordering may seem strange, but this is due to
the nature of the splitting and the order in which the splits were
performed.







	Action
	Default Shortcut




	Insert terminal number
	Super+1


	Insert zero padded terminal number
	Super+0





These actions can also be done from The Grouping Menu.




Next/Prev profile

It is possible to cycle back and forth through the available profiles
that are defined in the Profiles tab of the Preferences Window,
changing the behaviour and appearance of the current terminal.







	Action
	Default Shortcut




	Next profile
	 


	Previous profile
	 





In both cases there is currently no default shortcut set. I’m not
convinced they would be used often enough to warrant assigning
them. For those that find it useful, the feature is there to be
configured.







          

      

      

    

  

    
      
          
            
  [image: Because spanners mean settings?!?!?]

Preferences Window

Terminator is highly configurable, and automate-able, so the Preferences
dialog is naturally quite extensive. It currently consists of six tabs.
Let’s work through them one by one.


Global

[image: _images/prefs_global.png]
These settings are defaults, but some of them can be overridden by a
options on the command-line, or within a layout. A number will also
require a restart to take effect.


Behaviour


Window state (default: Normal)


This will determine what happens on startup normally.


	Normal - Window opens as normal.

	Hidden - Window does not open. Useful at login, so it is already
available with a shortcut.

	Maximised - Window opens maximised in the standard window manager
frame.

	Fullscreen - Window opens fullscreen with no window manager frame.






Always on top (default: off)


New windows attempt to remain on top, until deactivated in the window
menu.


Show on all workspaces (default: off)


New windows will follow if you switch to a different virtual desktop,
until deactivated in the window menu.


Hide on lose focus (default: off)


This is a quake console like feature, where the user want the window to
vanish when clicking elsewhere.


Warning

This is rather buggy at the moment as it is very easy for
the main window to lose focus and disappear.






Hide from taskbar (default: off)


The first window opened will not be displayed in the taskbar.
Subsequent windows will show in the taskbar (bug?).


Window geometry hints (default: off)


If this is checked, then when resizing Terminator will attempt to
step the sizing by the current font, and display a small box with the
dimension of the window in characters.


Warning

If you have problems with Terminator windows shrinking
in an uncontrollable way, then turning this option
off will usually fix the issue. It is not clear
why, but it seems Terminator and the window manager
get into an argument over what size the window should
be. Frankly this feature causes more trouble than it’s
worth. Don’t be surprised if it gets removed at some
point.






DBus server (default: on)


If a Terminator DBus server is not already on the session
bus, try to start one.


Mouse focus (default: Click to focus)


By what method the mouse pointer sets the focus on a terminal.


	GNOME Default - Act as per the system settings.

	Click to focus - You must click with in a terminal to make it the
focus.

	Follow mouse pointer - Moving the pointer over a terminal makes
it the focus.






Broadcast default (default: Group)


Which broadcast mode should be selected at startup:


	All - All terminals receive keystrokes.

	Group - Only terminals in the same group as the current terminal
receive keystrokes.

	None - Only the current terminal receives keystrokes.






PuTTY style paste (default: off)


Make the right mouse button operate like in PuTTY, so right-click
will paste the Primary selection, and middle-click will open
the Context Menu. (For ex-PuTTY users).


Smart copy (default: on)


If enabled and there is no selection, the shortcut is allowed to
pass through. This is useful for overloading Ctrl+C
to either copy a selection, or send the SIGINT to the current process
if there is no selection. If not enabled the shortcut does not pass
through at all, and the SIGINT does not get sent.


Note

For newbies SIGINT is the keyboard interrupt signal that
will interrupt the program running in the foreground of a
terminal.






Re-use profiles for new terminals (default: off)


When creating a new terminal with splitting or new tabs, if this is
enabled, then the profile from the previously focussed terminal will
also be used for the new one.


Use custom URL handler (default: off)


If this is enabled then Ctrl+click on a URL will try to use
the command defined in Custom URL handler to open the link. If not
enabled, Terminator will attempt to open the link with its internal
logic. In order this attempts to open the URL using GTK, xdg-open,
and lastly pythons internal web browser support.


Custom URL handler (default: inactive, empty)


If active and set, then URL’s will be passed as a command-line parameter
to the given command.








Appearance


Extra Styling (Theme dependant) (default: on)


For themes we have the option to include some additional CSS code
to make the window a bit prettier. For example under the Ubuntu
Ambiance theme GNOME Terminal has custom tabs. In line with our
unofficial policy of following gnome-terminal, I have replicated
that customisation for Terminator. Some may prefer to use the
unadulterated standard tabs, so using this option the extra styling
can be turned off.


Terminator seperator size (default: -1)


This is the width in pixels, and can range from -1 to 20. The value
of -1 will take the default size from the system theme.


Note

Making this too small will make grabbing the splitters
quite difficult, as we remove the oversized splitter
handles some themes provide because it interferes with
mouse selection of text.






Unfocused terminal font brightness (default: 80%)


Terminals that do not currently have the focus will can be dimmed
to aid focus. The value can range from 0% (invisible) to 100% (full
brightness)


Window borders (default: on)


The window manager frame is removed from your windows.


Tab position (default: Top)


Where the tabs will be located within the window


	Top

	Bottom

	Left

	Right

	Hidden - Tabs still work, you just can’t see them.






Tabs homogeneous (default: on)



Warning

This option was removed during the port to GTK 3,
and has no effect, apart from giving access to the
Tab scroll buttons option.

It used to give the choice between tabs of uniform
and non-uniform width.






Tabs scroll buttons (default: off)


When there are more tabs than can fit within the window buttons will
be drawn for moving left and right.


Warning

If the tab scroll buttons are turned off and you open
an extreme number of tabs in a single window, an
undesireable behaviour occurs. Once the tabs reduce to
the minimum possible size the window is forced wider to
accomodate additional tabs. It is not immediately
obvious as to what the correct response is in this
situation.












Terminal Titlebar


There is a table of the colours for the titlebars on the left. These
are modelled on those used in a utility I used to use called ClusTerm.
The three sets (Focused, Inactive and Receiving) will make more sense
after reading the section about The Grouping Menu.









	 
	Focused
	Inactive
	Receiving




	Font colour
	#FFFFFF
	#000000
	#FFFFFF


	Background
	#C80003
	#C0BEBF
	#0076C9





Hide size from title (default: off)


At the end of the label in the titlebar the size of the terminal is
given in characters, i.e. (80x24). Enabling this item will disable
the size text.


Use the system font (default: on)


By default the system defined proportional font will be used for the
text in the titlebar. Turning this off allows you to use a custom font.


Font (default: inactive, system proportional font)


If active and set, then the custom font to be used in the titlebar.










Profiles

You should already be familiar with the sub-tabs from GNOME Terminal,
and Terminator’s are modelled on those available in GNOME Terminal where
it makes sense, and give much of the same functionality.

Below we will go through each pane, and highlight and explain differences
between Terminator and GNOME Terminal.


General

[image: _images/prefs_profiles_general.png]
One key difference is that we have a sidebar to the left listing the
available Profiles, as opposed to GNOME Terminal, where the list is
a separate window launched from the menu bar. This also means a few of
the widgets, like the profile name, are not needed.

Use the system fixed width font (default: on)


By default the system defined proportional font will be used for the
text in the terminal. Turning this off allows you to use a custom font.


Font (inactive, system fixed width font)


If active and set, then the custom font to be used in the terminal.


Allow bold text (default: on)


Allows you to disable the use of bold fonts in the terminal.


Show titlebar (default: on)


The titlebar strip across the top of each terminal can be turned off.


Copy on selection (default: off)


This puts the selection into the copy/paste buffer, as well as being
available on middle-click.


Rewrap on resize (default: on)


This will cause longer lines to rewrap when a terminals width changes.


Note

Larger or infinite scrollback buffers may become slow when
this option is enabled.






Select-by-word characters (default: -,./?%&#:_)


Using double-click to select text will use this pattern to define
what characters are considered part of the word.



Cursor


Shape (default: Block)


Set the cursor shape


	Block - Solid rectangle.

	Underline - Single pixel tall horizontal line.

	I-Beam - Single pixel wide vertical line.






Colour (default: Foreground)


The colour of the cursor. A radio option of Foreground will use
whatever the foreground is defined as for regular text, as set
in the Colours tab. Alternatively a custom colour can be chosen
using the colour swatch.


Note

Foreground uses xor’ing so the text under the cursor is
always clear. Xor’ing is not used with a custom colour.
This means that if the colour of the character under the
cursor is similar to the colour chosen, then it can be
difficult to discern what that character is. The following
option can help with this.






Blink (default: on)


Whether the cursor blinks on and off.








Terminal bell


Titlebar icon (default: on)


On the right side of the titlebar a small light-bulb icon will
be displayed for a few seconds.


Visual flash (default: off)


The terminal area will briefly flash.


Audible beep (default: off)


The normal system beep noise as defined in system settings.


Window list flash (default: off)


This will set the urgent flag on the window in the taskbar. The
actual effect will be taskbar dependant.








Not in Terminator


Profile name


Our profiles names are in the sidebar to the left.


Profile ID


Ummm... OK, I have no idea what GNOME Terminal uses this for.


Show menubar by default in new terminals


Terminator doesn’t use a traditional menu bar. This has been removed
in new versions of GNOME Terminal.


Terminal bell


Terminator has more options, so has four separate options in their
own grouping. This item in GNOME Terminal is the same as Audible
beep defined above.


Initial terminal size


Terminator handles window sizes within Layouts,
or with Command line options.










Command

[image: _images/prefs_profiles_command.png]
Run commands as a login shell (default: off)


Force the command to run as a login shell.


Run a custom command instead of my shell (default: off)


Enable the use of a custom command instead of the users default
shell.


Custom command (default: inactive, empty)


If enabled and set, the users default shell will be replaced with
the command specified here.


Note

If you place an entry here note that there is no bash or
other shell underneath it. When the command ends, there
is no chance to drop to a shell or other program. This can
be worked around by using the shell line seperator ;
and a following bash command.




Warning

Running a non-bash program as a command can lead to
unexpected results. Some programs behaviour depends on
having a full, interactive shell underlying the program.
An expample would be mutt. Run standalone, at startup
it will begin with all threads expanded. Using:

bash -c mutt





will also not work, as this is a non-interactive session.
Instead make the session interactive with:

bash -ic mutt










When command exits (default: Exit the terminal)


When the running command exits (default or custom) what action
should be taken.


	Exit the terminal - Terminal closes, causing layout to adjust.

	Restart the command - Original command restarts immediately.

	Hold the terminal open - The terminal and scrollback will remain
visible and accessible until the user explicitly closes the
terminal, or closes the window.




Warning

If you are using Restart the command and your command
is broken and exits immediately, then you can end up
in a resource hungry loop.









Colours

[image: _images/prefs_profiles_colors.png]
There seems to be some mild quirks and differences (palettes available
or selected from the system theme) between Terminator and GNOME
Terminal.


Foreground and Background


Use colours from system theme (default: off)


Use colours as defined in the system theme. These are requested
from the underlying VTE widget.


Built-in schemes (default: Grey on black)


Pick a primary colour combination for foreground and background.
Again there are differences between Terminator and GNOME Terminal.

The list for GNOME Terminal seems to be dynamic and vary depending
on the system, with the addition of Custom which allows setting
the colours as desired. Terminator has a number of schemes hard
coded. (This may see improvement at some point.)




Text colour (default: inactive, #AAAAAA)


If the Built-in schemes is set to Custom the text colour can
be set here.


Background colour (default: inactive, #000000)


If the Built-in schemes is set to Custom the background colour
can be set here.








Palette


Built-in schemes (default: Ambience)


A predefined colour palette can be selected. The same text applies
as used for the Built in schemes option under Foreground and
Background .


Colour palette (default: inactive)


If the Palette’s Built-in schemes is set to custom, a set of
colour swatches are used to configure the 16 primary colours
of the shell palette.








Not in Terminator


Bold colour


In theory nothing is stopping us implementing this, it just doesn’t
appear to have ever been added.


Same as text colour


In truth, I’m not exactly sure what this does, but at a guess, the
user can force bold to be drawn in the same colour as the
foreground text.


Use transparent background


Our transparency has a tab all to itself.


Use transparency from system theme


Not sure which setting GNOME Terminal gets this from.










Background

[image: _images/prefs_profiles_background.png]
Solid colour (default: active)


Background of terminal is set to the solid colour set in previous
Colours tab.


Transparent background (default: inactive)


This will attempt true transparency where the windows below are
partially visible through the terminal.


Note

This option requires a compositing desktop.






Shade transparent background (default: 0.5)


For Transparent background this is how much the solid colour should
be blended in, giving a tinting effect.





Scrolling

[image: _images/prefs_profiles_scrolling.png]
Scrollbar is (default: On the right side)


If and where the scrollbar should appear.


	On the left side

	On the right side

	Disabled






Scroll on output (default: off)


Moves terminal to end of scrollback buffer when any output occurs.


Scroll on keystroke (default: on)


Moves terminal to end of scrollback buffer when any keypress occurs.


Infinite Scrollback (default: off)


Lines are never discarded, and all lines since the session began
are available.


Note

Data is placed onto the disk by the underlying VTE
component, so even after a long time, the memory footprint
and performance of Terminator should be OK.






Scrollback (default: 500 lines)


How many lines to keep before discarding.





Compatibility

[image: _images/prefs_profiles_compatability.png]
Backspace key generates (default: ASCII DEL)


Change behaviour of the Backspace key.


	Automatic

	Control-H

	ASCII DEL

	Escape sequence






Delete key generates (default: Escape sequence)


Change behaviour of the Delete key.


	Automatic

	Control-H

	ASCII DEL

	Escape sequence






Encoding (default: Unicode UTF-8)


Choose the default encoding method used from a long list of
available encodings.


Reset Compatibility Options to Defaults


Sets the previous items back to their defaults.



Not in Terminator

Ambiguous-width characters


Not really too sure what this does.









Layouts

[image: _images/prefs_layouts.png]
Layouts are the primary means for saving collections of windows,
tabs, and terminals. The use and flexibility of layouts is covered in
Layouts and the Layout Launcher. Here we will cover the bare minimum to understand the
configuration options.

In the list to the left is the saved layouts, with three buttons below:


	Add - Creates a new layout from the current windows, tabs and
terminals, and saves them with a new name.



	Remove - Delete the selected layout



	Save - Update the selected layout with the current windows, tabs,
and terminals.


Warning

You do not need to use the save button when changing the
options in the controls on the right.

If you do, you will lose the Custom command and
Working directory settings for all terminals in this
layout. It will also replace the saved layout with
the current layout. This means your windows may now be
the wrong size, or in the wrong position.







Once a layout is highlighted, its name can be changed by clicking it
again.

In the central list is a tree showing the structure of the selected
layout. When highlighting an entry of type Terminal, the controls on
the right become enabled, and can be changed.

Profile


The profile used by the select terminal as listed in the
Profiles tab.


Custom command


Override the command run in the terminal,  same as in a profile,
but this one has a higher priority. If empty, it will run the command
in the profile, or the default user shell.


Note

If you place an entry here note that there is no bash or
other shell underneath it.

If your application needs a shell (i.e. mutt misbehaves if
run without bash) then run your command inside a bash
session with:

bash -ic <command>

When the command ends, there is no chance to drop to a shell
or other program. This can be worked around by using the
shell line seperator ; and a following bash command:

bash -ic <command>; bash

However, note that the second bash will have no connection
to the details of the bash the command ran under. This means
no environment variables, or return codes are carried over.






Working directory


Whatever command is run (from layout, profile, or user default) it
will be executed with this entry as the working path. If empty the
default working directory is used, which is either where Terminator
was launched from, or the users home directory.





Keybindings

[image: _images/prefs_keybindings.png]
This is a list of all available keyboard shortcuts in the application.

To change a keybinding, first highlight the entry you wish to change.
Next click on the Keybinding column again. The entry should change
to New accelerator.... Simply perform the shortcut you wish to
set. If you change your mind use Esc (Escape) key to revert back
to the existing shortcut. If you wish to delete a shortcut, use the
BkSp key (Backspace, ←, or ⌫ depending on your keyboard).




Plugins

[image: _images/prefs_plugins.png]
Here you will find a list of available plugins, and whether they are
enabled or not. Plugins are covered in more detail in Plugins.




About

[image: _images/prefs_about.png]
A simple panel describing a bit about the application, and a set of
links that will guide users to some helpful Terminator project
resources. There’s also a mysterious button... I wonder what happens
when I press it?...







          

      

      

    

  

    
      
          
            
  [image: Favourites. Stars or hearts, and hearts won't look good on the red backbround.]

Layouts and the Layout Launcher

Layouts are how Terminator helps you quickly start a given set of
windows with the terminals arranged just how you like, and even
launching unique commands in each one.

You have already seen a glimpse of this in the Layouts
tab of the Preferences Window. If you haven’t already read the
information there, you should probably go back and do so. Here’s the
Layouts tab again:

[image: _images/prefs_layouts.png]
It’s simple to create a new layout. Just launch new windows, add tabs
and splits, arrange them, and customise them to your liking.

Layouts will currently directly detect and save:


	Window sizes and positions as well as the fullscreen or maximised
state

	Splitter positions

	Custom window, tab and titlebar names

	The profile of each terminal

	Group setting of each terminal

	The active terminal per window or tab, and the active tab per window
if applicable

	The UUID of each terminal



When done, use the Layouts section of the Preferences Window
to keep this layout for future use. You save them by using the Add
or Save buttons, where Add creates a new layout entry and
prompts for a name, and Save updates the currently selected layout.


Warning

Currently some things are not detected by the code, and
have to be configured in the Layouts tab of
the Preferences Window after the layout is saved/added.

This means that if you use the Save button in the
Layouts after spending time setting the
items below, you will lose these stored values.


	Custom command

	Working directory



First get the layout right, then edit these within the
Layouts tab of the Preferences Window. You
do not need to use the Save button to keep these
settings.

There is potential to improve this behaviour, as it is
a little unintuitive.




The Layout Launcher

You can set up an application launcher with the -l LAYOUT option
which will load the named layout, but what if you have a long list of
layouts, like me? It can be annoying distinguishing between 30 items
with the same icon, waiting for a tool-tip to tell you which one you’re
about to launch. No-one has the stamina to draw 30 distinct icons
representing all these layouts either!

[image: _images/layoutlauncher.png]
Enter the Layout Launcher, as shown on the right. This will list
all of your saved layouts in alphabetical order, apart from
default, which is always at the top. You can double-click an
entry, highlight it and select Launch, or use the keyboard to move
the highlight, pressing Return to launch.

The Layout Launcher can be opened from a running terminal using a
shortcut, or by running Terminator with the -s option. This
option could be set in an application launcher, to get to the Layout
Launcher with a single click.

You can have more than one Layout Launcher window open, or you could
launch one at the beginning, and pin it to always be on the visible
workspace.

Here’s a brief run-down of keyboard and mouse use:








	Action
	Mouse
	Default Shortcut




	Open the Layout Launcher
	N/A
	Alt+L


	Move Up/Down list
	click
	<Up/Down Arrow>


	Launch a layout
	double-click
	Return











          

      

      

    

  

    
      
          
            
  [image: Because nothing says grouping like three different coloured boxes... /s]

The Grouping Menu


Manipulating terminal groups

Grouping, as the name suggests, allows grouping of terminals so that
actions can be taken that affect more than one terminal. As usual,
following along will help understanding, so lets start with a basic
window, then split into a 2x2 grid.

Let’s have another look at the grouping menu for reference, because
as we proceed, it will change:

[image: _images/grouping_01.png]
The first item New group... allows you to create a named group,
using an editable field that will appear next to the 3-box icon. By
default this will be given a randomly selected name from the names
of the Greek alphabet. Here you can see Phi was selected:

[image: _images/grouping_02.png]
You can either start typing to replace the provided one with something
more descriptive, or you can accept the default with Return. For
the purpose of this document I will just be using default names.

If you again click the 3-box/group button, you will see that several
new entries have been added to the menu:

[image: _images/grouping_03.png]
Because the terminal now has a group the first new entry is None
which will remove the grouping for this terminal.

Following that is a list of the known groups, in this case only Phi
so far. This list (plus the None entry) can be used to change the
group of this terminal.

Next are two items: Remove group Phi and Remove all groups.
You will only get the currently assigned group group as an option to
remove, as well as an option to remove all groups. This does not
close the group, but simply removes the group assignments from the
terminals.

The next option is more destructive: Close group Phi will exit
the terminals assigned to this group.

Here I’ve gone ahead and set the upper right terminal to the same
Phi group, and the lower left terminal to a New group... of
Epsilon.

[image: _images/grouping_04.png]
A quick glance at the menu again will show that the only change is
the addition of the Epsilon group to the list.

To change a group name you can either click on New group... again,
or Shift+click on the 3-box/group button, and the editable
field will reappear.

The current terminal is the one with focus. By clicking with key
modifiers on other terminals 3-box/group button we can speed up group
organisation. Here’s a list of mouse actions (including some already
detailed):








	Action
	Mouse
	Default Shortcut




	Group menu popup
	click
	(TBD)


	Edit group for terminal
	Shift+click
	(TBD)


	Edit group for all terminals in the “group”
	Shift+Super+click
	(TBD?)


	Toggle to current terminals group [1]
	Ctrl+click
	 


	Toggle “group” to current terminals group [1]
	Ctrl+Super+click
	 








	[1]	(1, 2) These shortcuts will only work if you use them on terminals
that are not the current terminal.





Warning

The terminals with no named group are also considered a
de facto group. If you use one of the Super shortcuts
on a terminal with no group, you will also include all the
other terminals with no group.



Skipping slightly ahead in the menu, there are two options that make
more sense covered here. The Split to this group  (default: off)
option means that when you split the current terminal, the new one
will inherit the group of the current terminal. It is off by default
in which case new terminals have no group.

The second option Autoclean groups (default: on) will remove a
group from the menus group list when the last terminal with that
group is closed. If off groups will remain in the list until the
application exits, or the option is enabled.


Note

Not shown in the above screenshots, there are also menu
items for grouping all terminals in a tab in the menu. They
only appear once a new tab is created - Group all in tab
and Ungroup all in tab.



Some final group related shortcuts are for grouping all terminals
at once, or grouping terminals in the same tab.







	Action
	Default Shortcut




	Group all
	Super+G


	Ungroup all
	Shift+Super+G


	Group tab
	Super+T


	Ungroup tab
	Shift+Super+T


	Group all toggle
	 


	Group tab toggle
	 








Broadcasting input to multiple terminals

So first let me describe some terminology (no pun intended).
Broadcasting is the act of sending your input to multiple
terminals. The current terminal (the one with the red titlebar by
default) is always the broadcaster. Any terminal that is in
the same group as the current terminal is a potential receiver.
I say potential because the act of broadcasting can be turned on
and off independently of the grouping.

This can be an invaluable time-saver when having to do active
investigation across multiple machines where you would be repeating
the same commands on each of them.

Terminator’s titlebar is colour-coded to help you quickly see which
terminals are potential receivers, and whether they will receive
the broadcast input.

The titlebar is split into two parts. The leftmost part is the
3-box/group button that has one of three background colours as defined
in the Global tab of Preferences Window:


	Red - The current terminal and broadcaster.

	Blue - A terminal that is in the same group as the broadcaster.

	Grey - A terminal in a different group, or no group.



The second part consists of the title, and uses the same colouring
to show the following:


	Red - The current terminal and broadcaster.

	Blue - A terminal that is acting as a receiver and will duplicate
input from the broadcaster.

	Grey - A terminal that is not a receiver.



There are three settings for broadcasting, selected from the Group
menu. Following are images of each of these modes, with test
typed into the current broadcasting terminal:


	Broadcast off


[image: _images/broadcast_01.png]
Here you can see that only the current terminal receives input, even
though the upper right terminal is also a part of the Phi group.





	Broadcast all


[image: _images/broadcast_02.png]
Here you can see that all terminals, including those in other groups,
or with no group, receive the input.





	Broadcast group (default mode; can be changed in the
Global tab of Preferences Window.)


[image: _images/broadcast_03.png]
Here you can see that only the terminal(s) in the same group as
the broadcaster receive input.








Warning

Be careful with additional tabs, windows, or when you are
zoomed or maximised on a single terminal. Just because you
cannot see a terminal does not mean the terminal is not
receiving. This can cause problems if you are typing a
destructive command without realising that this command is
going to other terminals.

In particular, note that when you run Terminator a second
time, by default you are not running a completely
separate process. It is still connected to the grouping
of the initially launched Terminator process. If you need
a completely separated window you need to use the -u
option or disable the DBus interface in your config file.



Those with good eyesight may have spotted the other visual indicator
of the colours in the 3-box icon changing for the different status of
the terminals too. When you are zoomed or maximised, the presence of
blue in this icon might be the only visual indicator of receivers.

As with all things in Terminator, we have shortcuts to help you keep
your hands on the keyboard:







	Action
	Default Shortcut




	Broadcast off
	Alt+O


	Broadcast all
	Alt+A


	Broadcast group
	Alt+G






Warning

It has become apparent that the complexity of the input
systems used (IBus, IME, dead key layouts, etc) can cause
problems with broadcast input.

Instead of getting your intended character in all
receivers, you will only get the composed letter in the
current terminal, and what goes into the receivers is a
bit unpredictable. If you copy and paste the character
into the current terminal then it will be input into the
receivers.

You may not even realise that you are running one of these
systems (I had IBus by default, although I did not
experience issues with it.) Killing or disabling them
should temporarily fix the problem. There is a fix for the
IBus issue in newer the GTK3 version of Terminator, but we
still encounter people for whom this function is not 100%
reliable.






Insert terminal number

The last two menu items are slightly out of place here. They are the
same function as the shortcuts mentioned here.
They were added early on when the broadcast feature was added, and
the argument could be made for removing them. So far no-one has
though, so for now they will stay here.







          

      

      

    

  

    
      
          
            
  [image: I have the POWWWWWWEEEEERRRRRRR!!!!!!]

Plugins

Terminator can be expanded using plugins. Additional features can
be created outside of the main application, and added in at runtime.

In theory you should be able to implement fairly powerful plugins,
although so far the included ones we have are fairly small in scope.

The current plugins do not have configuration options in the
Plugins tab of the Preferences Window. The plugin
architecture was created before I (Steve Boddy) became maintainer,
and so far I haven’t had reason to figure out the detail. I’m not
entirely sure if/how a plugin can add options to the configuration
options in the Plugins tab. What plugins can definitely
do, because examples are below, is to:


	add menu items to The Context Menu,

	create their own windows,

	create handlers for strings that match a pattern.




Note

[image: _images/plugins_links.png]
Several of the included plugins create Click-able items
in the terminal. These are highlighted by underlining the item
when the mouse hovers over it.




Included plugins

The following plugins are distributed by default with Terminator.


Note

Unless otherwise stated, the included plugins are under the
Licensing as Terminator, GNU GPL v2.




Activity Watch

Original Author: Chris Jones

[image: _images/activitywatch_notification.png]
Adds a menu item, Watch for activity, to The Context Menu which
will create a notification, as seen to the right, when there is output
to the terminal. This is useful when you have a long running command
and wish to know when it has completed, or output an update.

There is one option for this plugin:

hush_period (default: 10.0)


How long in seconds until the next notification of activity is
presented.



Note

There is currently no way to edit these options in the GUI,
it must be done directly in The Config file.

An extract of this item being set would be:

[plugins]
  [[ActivityWatch]]
    hush_period = 30.0





Which would wait 30 seconds before showing another
notification of activity.




Note

Bear in mind also that your notification may look very
different to the image shown due to theming.






APT URL Handler

Original Author: Chris Jones

Text matching apt:.* will be converted into a click-able item that
when triggered with Ctrl+click will launch the default
package manager for software on a debian system.

right-click over the URL will add two entries to The Context Menu:


	Open software manager - Same as Ctrl+click

	Copy package URI - Just copies the URI to the clipboard






Custom Commands Menu

Original Author: Chris Jones

Adds a menu item, Custom Commands, to The Context Menu which
has a sub-menu containing its own Preferences item that launches
the window show below. Below that is a list of user configured
commands that can be chosen.

[image: _images/custom_commands.png]
In this window you can create a New item, and Edit or
Delete existing ones. The selected item can be repositioned in
the sub-menu order using the Top, Up, Down and Last
buttons.

Clicking New or Edit gives the smaller window. An Enabled
item is shown in sub-menu, and a disabled one is not. The Name is
used for the sub-menu item text. The Command is the text that will
be entered into the current terminal with a Return at the end to
execute/enter it. You do not get a chance to edit the text first.

A rudimentary support for sub-trees is implemented. Simply add one or
more / in the Name field, and the tree structure will be created.
Positioning is determined by the first time a sub-tree is referenced, so
a later reference will be attached to the sub-tree defined by an earlier
reference.


Note

If other terminals are receiving, they too will receive and
execute the Command.






Inactivity Watch

Original Author: Chris Jones

[image: _images/inactivitywatch_notification.png]
Adds a menu item, Watch for silence, to The Context Menu which
will create a notification, as seen to the right, when a terminal has
been quiet for a given period. This is useful when you have a long
running process that outputs constantly (i.e. compiling a kernel) and
you wish to know when it has ended. This notification will only show
once, unless there is some activity in the terminal after the initial
notification.

There are two options for this plugin:

inactive_period (default: 10.0)


How long in seconds until a terminal is considered inactive.


watch_interval (default: 5000)


How long in milliseconds between checks for inactivity.


Be aware that this combination will result in some uncertainty as to
the exact timing of the notification. In the worst case, with the
values given, the notification may take 14.9 seconds to appear.


Note

There is currently no way to edit these options in the GUI,
it must be done directly in The Config file.

An extract of these items being set would be:

[plugins]
  [[InactivityWatch]]
    inactive_period = 30.0
    watch_interval = 1000





Which would check every second if the terminal had been
silent for 30 seconds.




Note

Bear in mind also that your notification may look very
different to the image shown due to theming.






Launchpad Bug URL Handler

Original Author: Chris Jones

Text matching lp: #12345 where 12345 is a bug number in launchpad,
will be converted into a click-able item that when triggered with
Ctrl+click will launch a browser to the bug report in
launchpad.

Additionally the plugin will accept variants where the prefix is in
capitals, i.e. LP, and the :, white-space, and # are
optional.

The item can also be more than one bug number, and each will be opened,
for example:


lp: #12345. #67890, 54321,#9876


Ctrl+click on this will open four pages; one for each bug
number.

right-click over the URL will add two entries to The Context Menu:


	Open Launchpad bug - Same as Ctrl+click

	Copy bug URL - Just copies the URL to the clipboard






Launchpad Code URL Handler

Original Author: Chris Jones

Text matching lp:string will be converted into a click-able item
that when triggered with Ctrl+click will launch a browser
to the page in launchpad, where string is one of the following:


	project - i.e. lp:terminator

	project/series - i.e. lp:terminator/gtk3

	group/project/branch - i.e. lp:~sparkstar/terminator/terminator

	group/+junk/branch - i.e. lp:~<yourname>/+junk/terminator



Additionally the plugin will accept variants where the prefix is in
capitals, i.e. LP.

right-click over the URL will add two entries to The Context Menu:


	Open Launchpad branch - Same as Ctrl+click

	Copy branch URL - Just copies the URL to the clipboard






Logger

Original Author: Sinan Nalkaya

Adds a menu item, Start Logger, to The Context Menu which will
popup a window for selecting a file name to save as. Any content then
written to the terminal will be written to the file too. Once started
the menu item will change to Stop Logger which does precisely what
you would expect.


Warning

There appears to be problems when applications switch
to/from alternate mode (i.e. vi, mc, etc.) The obvious
one is that the alternate screen is not “logged”
although it is not clear how this could be logged. The
second issue is that some of the output after the
alternate screen is not logged. See LP#1477386 [https://bugs.launchpad.net/terminator/+bug/1477386] for
more info and progress.






Maven Plugin URL Handler

Original Author: Julien Nicoulaud

Ummmm..... I’m not entirely sure what this will do, as I don’t use
Maven. Updates on a postcard, please...

From the source:


Maven plugin handler. If the name of a Maven plugin is
detected, it is turned into a link to its documentation site.
If a Maven plugin goal is detected, the link points to the
particular goal page. Only Apache (org.apache.maven.plugins)
and Codehaus (org.codehaus.mojo) plugins are supported.





Terminal Shot

Original Author: Chris Jones

Adds a menu item, Terminal screenshot, to The Context Menu
that will take a screenshot of the underlying terminal, and present
a dialog for where to save it.




Test Plugin

Original Author: Chris Jones (most likely)

An almost comically stripped down example.






Third party plugins

As I find (or I’m told about) plugins that are available elsewhere,
I’ll add links here. I’ve done a preliminary search, and.. Wow! I
never knew there were so many out there.

If any of the authors would like to get their plugins added to the
main Terminator package, or they would prefer not to be listed here
for some reason, they can reach out to me through the project site
on Launchpad and we can sort it out.

I’m unsure of how these plugins are perceived. They are specific to
Terminator, but does that make them derivative in the eyes of GPL v2,
and therefore allow me to include them? If I want to include one in
the main package, do I have to hope the creator is still active?
Answers on a postcard...


Warning

I have done no testing or checking of these plugins. You
use at your own risk, and you are responsible for
evaluating the code for bugs, issues, and security.




Warning

While we have ensured the included plugins have received
the required changes to function with GTK3, the third party
plugins are not under our control. Examine the change logs
of the respective plugin and look for commits that mention
GTK3 updates.



In absolutely no order at all...


	https://github.com/rail/dotfiles/blob/master/terminator_bugzilla_handler.py

	
	terminator_bugzilla_handler: Link “bug:12345” to the Mozilla bugzilla.
(As it is for Mozilla, it seems a bit misnamed.)





	https://github.com/ilgarm/terminator_plugins

	
	clone_session: Split and clone ssh session





	https://github.com/arnaudh/terminator-plugins

	
	open_any_file_plugin: Open any file with it’s default application





	https://github.com/dr1s/terminator-plugins

	
	cluster_connect: A way to connect to multiple machines as a cluster





	https://github.com/mchelem/terminator-editor-plugin

	
	editor_plugin: Click on file:line style links to launch a text editor





	https://github.com/camillo/TerminatorPlugins

	
	LayoutManager: Saves and restores Layouts (which is built-in now, possibly redundant)

	TerminalExporter: Export contents to file





	https://github.com/choffee/terminator-plugins

	
	searchplugin: Search Google for the selected text in a terminal





	https://github.com/papajoker/editor_terminator

	
	editor_plugin: Another text editor launcher





	https://github.com/papajoker/git_terminator

	
	git_plugin: adds commands for git when it detects a .git folder





	https://github.com/iambibhas/terminator-plugins

	
	hastebin: Uploads selected text to Hastebin and opens browser on it





	https://github.com/abourget/abourget-terminator

	
	TenscoresPlugin: Seems to be for launching set of tabs (which is built-in now, possibly redundant)





	https://github.com/mikeadkison/terminator-google

	
	google: Another google-the-text plugin





	https://github.com/mariolameiras/ssh-menu-terminator

	
	ssh_menu: I’m guessing a bit, but I think it works with SSH Menu ;-) the code is quite big to understand at a glance.





	https://github.com/alesegdia/terminator-plugins

	
	Session: Save/load sessions (which is built-in now, possibly redundant)





	https://github.com/Theer108/colorize

	
	colorize: Colour titlebar of each terminal separately





	https://github.com/ju1ius/clisnips

	
	clisnips: Snippets for the command line.





	https://github.com/GratefulTony/TerminatorHostWatch

	
	hostWatch: Attempts to figure out your current host, and apply a certain theme.





	https://github.com/kmoppel/dumptofile

	
	dump_to_file: Dump console contents to a text file.





	https://bitbucket.org/pgularski/terminator-plugins

	
	show_titlebar: Menu item to show/hide the titlebar.

	searchplugin: Yup, another Googler.





	https://bitbucket.org/johnsanchezc/terminator-applauncher

	
	applauncher: A launcher/set-up tool (which is built-in now, possibly redundant)





	https://www.snip2code.com/Snippet/58595/Terminator-plugin—-log-the-output-of-t

	
	my_logger: Log the output to a file with a time-stamp as the name, and prefix each line with the time.
(Seems to be similar to, or derived from, the included one)





	https://github.com/OlivierBoucher/terminator-k8s-plugin

	
	k8s: NEW! Work in progress, with the ultimate goal to provide k8s specific informations in the shell title bar.










Installing a plugin

A plugin can be installed by adding the main python file (along with
any additional files) in one of two locations:


	/usr/[local/]share/terminator/terminatorlib/plugins/

	This will need root permissions to do.   The optional local/ is
usually for packages installed by hand, rather  than through the
package manager, and this depends on how Terminator was installed
on your system.

	~/.config/terminator/plugins/

	This allows you to use plugins without needing root.






Creating your own plugins


Note

The following guide is initially sourced from a tutorial [http://www.tenshu.net/2010/04/writing-terminator-plugins.html]
written by Chris Jones back in April 2010. I’m reproducing
it here as a precaution, although I don’t expect the
original will disappear. It will get rewritten and expanded
as more knowledge and information is added.



One of the features of the new 0.9x series of Terminator releases
that hasn’t had a huge amount of announcement/discussion yet is the
plugin system. I’ve posted previously about the decisions that went
into the design of the plugin framework, but I figured now would be
a good time to look at how to actually take advantage of it.

While the plugin system is really generic, so far there are only two
points in the Terminator code that actually look for plugins - the
Terminal context menu and the default URL opening code. If you find
you’d like to write a plugin that interacts with a different part of
Terminator, please let me know, I’d love to see some clever uses of
plugins and I definitely want to expand the number of points that
plugins can hook into.


The basics of a plugin

A plugin is a class in a .py file in terminatorlib/plugins or
~/.config/terminator/plugins, but not all classes are automatically
treated as plugins. Terminator will examine each of the .py files it
finds for a list called available and it will load each of the
classes mentioned therein.

Additionally, it would be a good idea to import terminatorlib.plugin
as that contains the base classes that other plugins should be derived
from.

A quick example:

import terminatorlib.plugin as plugin
available = ['myfirstplugin']
class myfirstplugin(plugin.SomeBasePluginClass):
  # etc.





So now let’s move on to the simplest type of plugin currently available
in Terminator, a URL handler.




URL Handlers

This type of plugin adds new regular expressions to match text in the
terminal that should be handled as URLs. We ship an example of this
with Terminator, it’s a handler that adds support for the commonly
used format for Launchpad. Ignoring the comments and the basics above,
this is ultimately all it is:

class LaunchpadBugURLHandler(plugin.URLHandler):
  capabilities = ['url_handler']
  handler_name = 'launchpad_bug'
  match = '\\b(lp|LP):?\s?#?[0-9]+(,\s*#?[0-9]+)*\\b'

  def callback(self, url):
    for item in re.findall(r'[0-9]+', url):
      return('https://bugs.launchpad.net/bugs/%s' % item)





That’s it! Let’s break it down a little to see the important things
here:


	inherit from plugin.URLHandler if you want to handle URLs.

	include ‘url_handler’ in your capabilities list

	URL handlers must specify a unique handler_name (no enforcement of
uniqueness is performed by Terminator, so use some common sense with
the namespace)

	Terminator will call a method in your class called callback() and
pass it the text that was matched. You must return a valid URL
which will probably be based on this text.



And that’s all there is to it really. Next time you start terminator
you should find the pattern you added gets handled as a URL!




Context menu items

This type of plugin is a little more involved, but not a huge amount
and as with URLHandler we ship an example in
terminatorlib/plugins/custom_commands.py which is a plugin that
allows users to add custom commands to be sent to the terminal when
selected. This also brings a second aspect of making more complex
plugins - storing configuration. Terminator’s shiny new configuration
system (based on the excellent ConfigObj) exposes some API for plugins
to use for loading and storing their configuration. The nuts and bolts
here are:

import terminatorlib.plugin as plugin
from terminatorlib.config import Config
available = ['CustomCommandsMenu']

class CustomCommandsMenu(plugin.MenuItem):
  capabilities = ['terminal_menu']
  config = None

  def __init__(self):
    self.config = Config()
    myconfig = self.config.plugin_get_config(self.__class__.__name__)
    # Now extract valid data from sections{}

  def callback(self, menuitems, menu, terminal):
    menuitems.append(gtk.MenuItem('some jazz'))





This is a pretty simplified example, but it’s sufficient to insert a
menu item that says “some jazz”. I’m not going to go into the detail
of hooking up a handler to the ‘activate’ event of the MenuItem or
other PyGTK mechanics, but this gives you the basic detail. The method
that Terminator will call from your class is again “callback()” and
you get passed a list you should add your menu structure to, along
with references to the main menu object and the related Terminal. As
the plugin system expands and matures I’d like to be more formal about
the API that plugins should expect to be able to rely on, rather than
having them poke around inside classes like Config and Terminal.
Suggestions are welcome :)

Regarding the configuration storage API - the value returned by
Config.plugin_get_config() is just a dict, it’s whatever is currently
configured for your plugin’s name in the Terminator config file.
There’s no validation of this data, so you should pay attention to it
containing valid data. You can then set whatever you want in this
dict and pass it to Config().plugin_set_config() with the name of
your class and then call Config().save() to flush this out to disk
(I recommend that you be quite liberal about calling save()).




Wrap up

Right now that’s all there is to it. Please get in touch if you have
any suggestions or questions - I’d love to ship more plugins with
Terminator itself, and I can think of some great ideas. Probably the
most useful thing would be something to help customise Terminator for
heavy ssh users (see the earlier fork of Terminator called
‘ssherminator’)









          

      

      

    

  

    
      
          
            
  [image: Cos it's blue... Like the T-X.]

Advanced Usage

This is a grab-bag of topics that cover the bits you probably wouldn’t
use in day-to-day activities.


Command line options

Various options can be passed to Terminator at startup time to change
numerous aspects and behaviour.

The following option sub-sections can also be seen in the manual page
for Terminator:

man terminator






Note

I’ve rearranged and grouped the options compared to how they
would appear using the -h option just to aid clarity.




General options


	-h, --help

	Show a help message and exit

	-v, --version

	Display program version

	-g CONFIG, --config=CONFIG

	Specify a config file

	--new-tab

	If Terminator is already running, just open a new tab

	-p PROFILE, --profile=PROFILE

	Use a different profile as the default

	-u, --no-dbus

	Disable DBus






Window options


	-m, --maximise

	Maximise the window

	-f, --fullscreen

	Make the window fill the screen

	-b, --borderless

	Disable window borders

	-H, --hidden

	Hide the window at startup

	--geometry=GEOMETRY

	Set the preferred size and position of the window (see X man page)

	-T FORCEDTITLE, --title=FORCEDTITLE

	Specify a title for the window

	-i FORCEDICON, --icon=FORCEDICON

	Set a custom icon for the window (by file or name)






Shell options


	-e COMMAND, --command=COMMAND

	Specify a command to execute inside the terminal

	-x, --execute

	Use the rest of the command line as a command to execute inside the
terminal, and its arguments

	--working-directory=DIR

	Set the working directory






Layout options


	-l LAYOUT, --layout=LAYOUT

	Launch with the given layout

	-s, --select-layout

	Select a layout from a list






Custom Window Manager options

These settings are for people with heavy customisations to their
window manager. Some window managers allow various rules to be
applied, or actions to be taken, depending on how the window
system perceives the window. These settings facilitate that.


	-r ROLE, --role=ROLE

	Set a custom WM_WINDOW_ROLE property on the window




Note

In case you’re looking for the previously supported
classname setting, it has been removed as the gtk
libraries deprecated the function call that allowed forcing
the window class in this way.






Debugging options

See Debugging for more explanation of these options.


	-d, --debug

	Enable debugging information (twice for debug server)

	--debug-classes=DEBUG_CLASSES

	Comma separated list of classes to limit debugging to

	--debug-methods=DEBUG_METHODS

	Comma separated list of methods to limit debugging to








The Config file

The default configuration file file for Terminator is stored in the
standard path for configuration files. It can be found at:

${HOME}/.config/terminator/config





It is human readable, and can be edited if you are are careful. This
is not generally recommended though, and you are, of course, strongly
advised to make a backup before making manual changes.

There are many more specific details in the manual page:

man terminator_config






Warning

If you place items in the wrong location within the config
file it can cause unintended results. In the worst case
Terminator will fail to load. In the best case it will
have no effect and you will simply confused as to why your
change has made no difference.






Debugging

There is inbuilt debugging features in Terminator. The simplest is to
start Terminator from another terminal application (i.e. gnome-terminal)
with the option -d. This will dump many debug statements to the
launching terminal.


Note

If the DBus is active in any other Terminator, then by
default your attempt to launch with debug will launch
a new window under the already running process. To prevent
this you can use the -u option which will disable the
DBus interaction for the debugged instance of Terminator.



There is a lot of output, and a great deal of it will typically not
be related to the area you are looking into. There are two more
options that can be passed that limit the amount of debug lines to
classes or methods of interest. See Debugging options
for the detail.

[image: _images/context_open_debug_tab.png]
The final facility is to start a debug server by passing -dd (this
is the same as -d -d) which will start a debug server. With this
setting a fourth item, Open Debug Tab, also appears in the second
part of the The Context Menu, as highlighted in the image to the
right.

Selecting it will give the following new tab with dedicated debug
terminal:

[image: _images/debug_tab.png]
This prompt is a standard Python interactive prompt, but this is
connected to the Terminator instance. You can explore the applications
data structures, classes, etc. and can even call functions and methods.

Alternatively, instead of launching this tab, you could connect to the
debug server from a different window. This requires that you search
back through the debug output for the line containing “listening on”.
Here you will see the port number, and you can simply use:

$ telnet localhost <port>






Warning

Whichever method you use the debug output is also dumped
into this terminal, even though it is already there in
the launching terminal. This can get rather annoying,
and seems counter-productive to me,  so a way to turn
off the output in the debug console may be added. In
the meantime you can use:

>>> from terminatorlib import util
... util.DEBUG=False





This should turn off the output, and let you explore the
internal structure more easily.




Warning

Using the -dd option will make the DBus
interface temperamental. Any attempt to use Remotinator
will hang the main application.



The debug options and their usage are detailed
here.




DBus

DBus is a standardized form of IPC, or Inter-Process Communication.
More detail about the internals of DBus can be found at the
freedesktop.org [http://www.freedesktop.org/wiki/Software/dbus/] for DBus.

In Terminator we currently use DBus for two tasks:


	Only run one instance of Terminator

The first instance will create the server. The second instance will
fail to create the server, so it will request the first instance to
create a new window (or new tab with --new-tab).



	Enable Remotinator






Warning

Running a single instance of Terminator can cause behaviour
that is unexpected by the user when a terminator instance
is already running. They do not have seperate processes,
and currently some features (in particular broadcast, and
grouping keys) may include more terminals than you expect.
You can work around this by using the -u option that
will disable the DBus for that secondary instance.

The Layout Launcher already does this for you, and as a
result any layout launched this way is running without
DBus, and cannot be controlled with DBus. If you use the
command line option -l <LAYOUT_NAME> to open a new
layout, this will not disable the DBus unless you
explicitly add the -u option too.




Note

There is quite some scope for improving this. I have a vague
notion of a single master server and multiple instance
servers, to improve the interaction between DBus and
layouts.






Remotinator

Remotinator is a minimal wrapper around making DBus calls, and is
typically run from within a Terminator terminal. This is not
strictly necessary but, if you do not, you will have to do some extra
work to determine the valid UUID of a current terminal and pass it as
the TERMINATOR_UUID environment variable, or as the value to the
-u/--uuid option. Remotinator is called within Terminator
with:

$ remotinator <command>





or with one of the following:

$ remotinator --uuid <UUID> <command>
$ TERMINATOR_UUID=<UUID> remotinator <command>
$ export TERMINATOR_UUID=<UUID>; remotinator <command>





to force the UUID, or call it from outside Terminator.

There are a couple of commands that do not require a UUID. Please see
the table below for details.

The following commands are currently enabled:







	Command
	Action




	get_tab
	Get the UUID of a parent tab


	get_tab_title
	Get the title of a parent tab


	get_terminals [1]
	Get a list of all terminals


	get_window
	Get the UUID of a parent window


	get_window_title
	Get the title of a parent window


	hsplit
	Split the current terminal horizontally


	new_tab
	Open a new tab


	new_window [1]
	Open a new window


	vsplit
	Split the current terminal vertically








	[1]	(1, 2) These commands do not require the UUID. If not marked as such
then the command does require the UUID.




Calling Remotinator without a command or with the -h will print
the options and available commands to the terminal.


Note

If a layout has been launched using the The Layout Launcher
or using the -u option Remotinator will not work
with that layout as it is not connected to the DBus session.

As mentioned in the DBus section, this has the
potential to be improved upon.



There is a lot of scope for expanding the available commands, and it is
relatively simple to do, so is an ideal task for dipping ones toes.







          

      

      

    

  

    
      
          
            
  [image: Because curious cats ask clever code monkeys.]

Frequently Asked Questions

Here I’ll try to list some common questions that get asked.


Why...


...is there another terminal program called Terminator?

There is another terminal [https://code.google.com/p/jessies/wiki/Terminator] project programmed in Java. It was begun a
bit before this project, but when this projects creator searched the
name I guess the other project did not come up. I don’t know the details,
but this project was always Terminator to me. I haven’t received
complaints from the other project, although they do get some people
asking in their Groups for support on this project. Please don’t do that
folks.

I have contemplated a name change, although this project has a lot of
visibility with it’s current name, and it is hard to come up with a decent
alternative [http://gnometerminator.blogspot.com/2015/09/whats-in-name.html].




...write in Python? It’s slow/bloated/bad?


Performance


	Profiles were configured with command bash -c exit, and the

	commands run a couple of times to get the caches loaded up.



GNOME-Terminal:

idiot@village:~$ time for i in {1..30} ; do gnome-terminal --profile=Quickexit; done

real    0m10.606s





Terminator:

idiot@village:~$ time for i in {1..30} ; do terminator -g deletemeconfig -p Quickexit; done

GTK2: real    0m11.928s A smidgen slower.
GTK3: real    0m10.885s Yeah, basically identical!





Cold start, using sync && echo 3 > /proc/sys/vm/drop_caches before
each run, then launching a single timed instance.

Gnome-Terminal:

idiot@village:~$ time gnome-terminal --profile=Quickexit

real    0m7.628s (approx median, there was a strange variance for GT, between 5 and 9 secs)





Terminator:

idiot@village:~$ time terminator -g deletemeconfig -p Quickexit

GTK2: real    0m11.390s (median of 3x)
GTK3: real    0m11.264s (median of 3x)





OK, so this is the once place you would notice an appreciable
difference. How often do you start these things with completely empty
caches/buffers?

In GTK2 there is a known issue which slows the cat’ing of large files
quite a bit. The VTE in GTK3 Terminator is the exact same widget
GNOME-Terminal uses, so this will get better, as and when we move
fully to the in-progress GTK3 port. I should point out that this
performance deficit is not due to the Python interpreter, or the
Terminator Python code, but is solely down to the compiled C code VTE
widget.




Memory use - The dumb way

GNOME-Terminal:

idiot@village:~$ for i in {1..100} ; do gnome-terminal --disable-factory & done





root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free           # Before startup
             total       used       free     shared    buffers     cached
Mem:       3102404    1388776    1713628       4052        164      45340
-/+ buffers/cache:    1343272    1759132
Swap:      3121996     788704    2333292
root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free          # After startup
             total       used       free     shared    buffers     cached
Mem:       3102404    2439524     662880      57196       1240      99212
-/+ buffers/cache:    2339072     763332
Swap:      3121996     751440    2370556
root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free          # After kill
             total       used       free     shared    buffers     cached
Mem:       3102404    1466536    1635868       4796        160      45912
-/+ buffers/cache:    1420464    1681940
Swap:      3121996     751020    2370976

Used (used mem -buffers/cache + swap)
    Before start: 2131976
    After start : 3090512 = 958536 kbytes, 936 Mbytes / 9.36 MBytes/instance
    After kill  : 2171484 =  39508 kbytes,  38 Mbytes not recovered





Terminator GTK2:

idiot@village:~$ for i in {1..100} ; do terminator -g deletemeconfig -u & done





root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free
             total       used       free     shared    buffers     cached
Mem:       3102404    1313456    1788948       4284        152      43844
-/+ buffers/cache:    1269460    1832944
Swap:      3121996     736844    2385152
root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free
             total       used       free     shared    buffers     cached
Mem:       3102404    2866552     235852      19484       1084      65408
-/+ buffers/cache:    2800060     302344
Swap:      3121996     736340    2385656
root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free
             total       used       free     shared    buffers     cached
Mem:       3102404    1317724    1784680       4284        152      43464
-/+ buffers/cache:    1274108    1828296
Swap:      3121996     736304    2385692

Used (used mem -buffers/cache + swap)
    before start: 2006304
    after start : 3536400 = 1530096 kbytes, 1494 Mbytes / 14.94 MBytes/instance
    after kill  : 2010412 =    4108 kbytes,    4 Mbytes not recovered





Terminator GTK3:

idiot@village:~$ for i in {1..100} ; do terminator -g deletemeconfig -u & done





root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free
         total       used       free     shared    buffers     cached
Mem:       3102404    1467204    1635200       4816        120      46132
-/+ buffers/cache:    1420952    1681452
Swap:      3121996     751000    2370996
root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free
             total       used       free     shared    buffers     cached
Mem:       3102404    2848372     254032       7216        960      52652
-/+ buffers/cache:    2794760     307644
Swap:      3121996     750016    2371980
root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free
             total       used       free     shared    buffers     cached
Mem:       3102404    1483388    1619016       4820        148      46084
-/+ buffers/cache:    1437156    1665248
Swap:      3121996     749828    2372168

Used (used mem -buffers/cache + swap)
    before start: 2171952
    after start : 3544776 = 1372824 kbytes, 1340 Mbytes / 13.41 MBytes/instance
    after kill  : 2186984 =   15032 kbytes,   15 Mbytes not recovered





OK, so yes, there is more overhead. We did just start 100 Python
interpreters! As titled, this is dumb, and even if you use this dumb
method, are you really going to have a hundred of them?...




Memory use - The sensible way

GNOME-Terminal:

idiot@village:~$ gnome-terminal &
idiot@village:~$ for i in {1..100} ; do gnome-terminal & done





root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free          # Before 100
             total       used       free     shared    buffers     cached
Mem:       3102404    1490996    1611408       5344        172      47580
-/+ buffers/cache:    1443244    1659160
Swap:      3121996     749776    2372220
root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free          # After 100
             total       used       free     shared    buffers     cached
Mem:       3102404    1878228    1224176       5344        172      47388
-/+ buffers/cache:    1830668    1271736
Swap:      3121996     733396    2388600
root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free          # After kill
             total       used       free     shared    buffers     cached
Mem:       3102404    1491888    1610516       4840        272      46088
-/+ buffers/cache:    1445528    1656876
Swap:      3121996     733240    2388756

Used (used mem -buffers/cache + swap)
    Before start: 2193020
    After start : 2564064 = 371044 kbytes, 362 Mbytes / 3.59 MBytes/instance
    After kill  : 2178768 = −14252 kbytes, -13.92 Mbytes recovered (first process)





Terminator GTK2:

idiot@village:~$ terminator -g deletemeconfig &
idiot@village:~$ for i in {1..100} ; do terminator -g deletemeconfig -u & done





root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free
             total       used       free     shared    buffers     cached
Mem:       3102404    1324492    1777912       4388        152      49688
-/+ buffers/cache:    1274652    1827752
Swap:      3121996     744528    2377468
root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free
             total       used       free     shared    buffers     cached
Mem:       3102404    1652112    1450292       4756        860      49968
-/+ buffers/cache:    1601284    1501120
Swap:      3121996     744224    2377772
root@pinpoint:~# sync && echo 3 > /proc/sys/vm/drop_caches && free
             total       used       free     shared    buffers     cached
Mem:       3102404    1305376    1797028       4236        124      42836
-/+ buffers/cache:    1262416    1839988
Swap:      3121996     744116    2377880

Used (used mem -buffers/cache + swap)
    before start: 2019180
    after start : 2345508 = 326328 kbytes, 319 Mbytes / 3.16 MBytes/instance
    after kill  : 2006532 = −12648 kbytes,  -12.35 Mbytes recovered (first process)





Terminator GTK3:


Not possible at the moment because the DBus interface still needs fixing.


So that one surprised me a bit. The fact that when using the single
process we are more memory efficient. Python + 100 terminals is
using <90% of the GNOME-Terminal + 100 terminals.

Some may think that this is something to do with the different version
of the VTE widget, but hang on a second. In the dumb method GTK2
Terminator used more memory than GTK3. Once the DBus is fixed for
GTK3 there could potentially be more savings.




“Python sucks!”

Yeah, whatever. The fact is that I’m a helluva lot more productive in
Python than I ever was, am, or will be, in C. In my totally biased
and uninformed opinion, I also think certain things are much easier
to get working in Python because you can iterate faster. With the
Debugging option to run an interactive terminal you even
have the ability to try out ideas and explore the running instance
directly. Results don’t get more immediate than that!




In summary

It’s a bit slower on startup, it takes a bit more memory, but that’s
when you use the dumb method. In normal use, where you’re likely to
be using the existing process to open a new window, it is for all
practical purposes as fast as the compiled GNOME-Terminal. It may
even (according to the last memory section) be a little lighter
memory wise, and more obliging about giving it back!

I didn’t compare to things like xterm, because frankly we’re not
aimed at the same people. Personally I’d rather have the more
extensive features saving me lots of time over the course of the
day when using it, than save a handful of seconds every few days
when I restart it, or worrying about an extra 5 or 10 MBytes.








How do I...


...make Terminator work like Quake style terminals?

You can get close, but it isn’t a perfect recreation, as Terminator
was not designed with this in mind, but improvements are always welcome!


	Window state: Hidden

	Always on top: On

	Show on all workspaces: On

	Hide on lose focus: On

	Hide from taskbar

	Window borders: Off (use Alt+click-drag and
Alt+middle-click-drag to position and size window.)

	Set the Toggle window visibility shortcut to your preference




Note

It must be the first Terminator instance started, because
at present only the first instance can bind to the Window
toggle.



This will give you a terminal hidden at startup that appears with a
keypress and disappears, either with another keypress, or losing focus.
It will stay on top, and appear on whichever workspace you are on.

Something that we don’t have is the slide in action of a true Quake
style terminal. The terminal will simply flick into view, and flick
out of view.


Warning

The Hide on lose focus option is problematic at this
time. You will probably find it very frustrating.











          

      

      

    

  

    
      
          
            
  [image: Saefty first when breaking out the power tools.]

Getting involved

There are many ways to help out, and they don’t all involve coding.


Translations

Sprechen Sie Deutsch?

Awesome! I’ve been getting my head around the whole translation
bit (English monoglot I’m afraid), and as a result there has been
a lot of churn in the translations. So what are you waiting for?

Speak some other language? Take a look at
https://translations.launchpad.net/terminator because you might
just be the <insert language here> speaker that we’re looking for.




Improve icons/artwork

OK, so while the main icon contributed by Cory Kontros is really
good, my hacks of it are... not so good. I’m no artist, but I do
appreciate them. So if you think you could apply some polish and
a cohesive design to this manuals page header images, please, give
it a go. It may only be to take the existing icon and to make it
suck less.

The only thing I would ask is that you maintain the main icon as
a base like I have done.




Terminator action shots

This one’s just for “PR” purposes. I want to see famous/awesome
people kicking ass and chewing bubble-gum with Terminator in the
mix.

If you spot it in a TV show, movie, or a news article I want to
know. Maybe you’re even the famous/awesome person, in which case
drop me a note.

It will warm the cockles of my heart to know that Terminator made
life easier for people who do the really important stuff like
discovering new particles (CERN? Hello?), boldly going (NASA? Come
in Houston), or wrangle 2 more frames per second from Half-Life 3
(Valve? Confirmed?)

Here’s the ones I’ve spotted and noted (I’ve seen quite a few others
previously, but never thought to note them)


	
	MindMaze [http://www.theverge.com/2015/3/3/8136405/mind-maze-mind-leap-thought-reading-virtual-reality-headset] - VR / mind-reading.

	Visible in the background of the video, and in an image lower down
the page. (The Verge)





	
	Dual Universe [https://www.kickstarter.com/projects/1949863330/dual-universe-civilization-building-sci-fi-mmorpg] - Sci-Fi MMORPG

	Visible at 17:40 of the pitch video. (KickStarter)










Manual updates

This manual is a new endeavour to fully document all the nooks and
crannies of Terminator. As such, there may be things that are missing,
incorrect, not explained clearly, or need expanding.

Suggestions, or updates are welcome.

I had a little exposure at work to Sphinx, so I thought I’d dig in
a bit deeper and learn  a bit about it. So far I’m happy enough, so
till further notice this manual will remain in this format.

If you’re feeling like a loquacious polyglot you could attempt to
translate the whole manual. So far I haven’t tested it, but in
principle, just do an export of the manual-gtk3 branch in Launchpad
to a folder manual-gtk3-<LANG>, where <LANG> is the i18n
language code. This is usually just the two or three letters of the
language code, but sometimes has the region too... Or something else
entirely in a couple of cases.  A couple of examples:

pt            - Portugese
pt_BR         - Brazilian Portugese
ca            - Catalan
ca@valencia   - Catalan (Dialect specific to Valencia?)





Then just translate away, and take new screen grabs to replace the
British English ones I’ve done. If someone was to make a serious
effort to translate the manual, I’m sure we can get it included.


Note

If there are any Americans offended by correct spelling,
they are more than welcome to create an Americanised
version, and I’ll relegate it to the en_US folder. The
default will remain British English.



As there is only one language available, the Help shortcut will by
default open:

http://terminator-gtk3.readthedocs.io/en/latest/index.html





The specifics of how readthedocs.io handle multiple languages are still
a little hazy, but as I understand it uses the http headers passed by
your browser, and directs you to the appropriate URL, for example:

http://terminator-gtk3.readthedocs.io/de/latest/index.html





In order to build the html for the manual, you must have sphinx and the
sphinx_rtd_theme package installed. Ideally you will be using a distro
with these packages available. An example would be Ubuntu 16.04 LTS:

sudo apt-get install python-sphinx python-sphinx-rtd-theme





This will take care of installing sphinx, the theme and it’s dependencies.

Once a manual has a reasonable amount of translation we can look into
adding it to the readthedocs.io website so it integrates properly.


Warning

This section may need updating if we do reach the point of
adding another manual. It is at this point we will have to
figure out the details of adding the translated manuals,
and getting the user to the correct document.






Testing

Just use it, explore the features, and complain when they don’t work.

We actually have quite a lots of outstanding issues, and in many
cases I can’t reproduce due to either lack of info, differences in
environment, lack of information, or because the bug is so old the
original raiser has moved on and not available for questions.

I’m particularly interested in cases where I can’t even see that
something is an issue, such as:


	Right-to-Left - I can force Terminator to Arabic, and everything
flips around, but I have no idea if it looks “right” to a native
speaker. Frankly it just looks weird!

	HighContrast - Again, I can switch to it, but perhaps I’m not
appreciating the needs of that group.

	Accessibility - People using only a keyboard, or only a mouse,
on-screen keyboards, text-to-speech, speech-to-text, and so on.






Bugs

Bugs (and feature requests) are raised and dealt with in the Launchpad
bugs [https://bugs.launchpad.net/terminator] page.


	Fixing - OK, so yeah, this is coding.

	Reproduce and improving - Sometimes bugs are lacking info to
reproduce, or my system is too different. Or perhaps the original
poster has moved on because we haven’t fixed their pet peeve fast
enough.

	Triaging - It’s one of the less glamorous jobs, but someone’s
gotta do it. Shepherd bugs to the point where it has a priority,
a milestone, reproduction steps, confirmation, submitted patches
validated, and so on.

	Raising - If you have searched and cannot find your bug, you
can raise a new one.



Feature requests are initially raised as bugs, and if it passes the
rather undefined criteria, it will be marked as a wishlist item.


Bug handling

I have had one person (possibly others) who are hesitant to use the
status’ because they’ve been “told off” by the developers of other
projects, and people/projects are often different in how they want to
handle bugs. So, with that in mind, let me present my idea of how a
bug should be handled. First a pretty picture:

[image: _images/launchpad_bugflow.png]
So, the darker blue states are the ones available in Launchpad that
can be manually set. The two marked with a red outline require bug
supervisor role to set, which means a member of the Terminator team.
The pale blue states are ones that I personally feel should be there,
but are missing. I’ll explain my intention with those in the
appropriate sections below. The grey state is set automatically only,
and cannot be set by anyone.


Initial/New

When you the user create a bug it goes into New. If another user
clicks the This bug affects you link, this gets moved to Confirmed.




Investigation

If I (or indeed someone else) go to a New or Confirmed bug, and
are unable to reproduce it then it will be marked Incomplete, and
someone (preferably the original raiser, but it can be someone else
affected) needs to revisit and provide the requested additional info.
Ideally when that is added there would be a New Info (or similar)
state that the user would set the bug to, and then the dashed line
would be taken.

Because we don’t have this state, we “skip” straight through and abuse
the Confirmed state. Set the bug (back) to Confirmed, and
assign the official tag new-info. Once the ticket is reviewed the
tag will be removed, and a new state assigned, possibly even
Incomplete again.

Note that I am aware of the two Incomplete options for with and
without response, but the way it works is unclear, and I can’t switch
between the two myself, and it is not clear when Launchpad switches
it. So, I’ll be ignoring them and treating Incomplete as a single
state.




Acceptance

At this point the bug should provide enough information to be
reproducible. Only a supervisor can set an issue to Triaged. This
state says, “Yes, the information provided either permits me to
reproduce myself, or see what went wrong from provided logs, config,
etc.” Typically they go here when I don’t have the time to start
working on an immediate fix.

Alternatively I (or anyone) could start working on a bug. Ideally the
issue should be set to In Progress, and assigned to the person
picking it up. That way, two people don’t work on the same issue.

Sometimes, for trivial or interesting bugs, they might get looked at
and fixed so fast that they skip all Acceptance categories, and go
straight to one of the Resolved states.




Resolved

Fix Committed is for when a fix is pushed to the main Launchpad
bazaar repository and typically I do this. If you create a contribution
via a branch, and commit to your branch, do not set to this yourself.
Instead associate the bug with the branch, and request a merge. When
I do the merge I will also set the bug to Fix Committed.

An Invalid bug is usually because the user didn’t understand
something, or it is in fact a support request.

Only a bug supervisor can set an issue to Won’t Fix. It is the
supervisors way of ending the discussion when it is felt that a bug
does not fit the projects plans, but someone can’t let it go [https://www.youtube.com/watch?v=L0MK7qz13bU#t=1m05s].

Opinion is typically when the user and I have a different
expectation about behaviour or a new feature, or I think that something
being proposed would actually be a negative for Terminator. Unlike
Won’t Fix, this can still be discussed within the ticket.

Not Responsible is our second missing virtual state. For me this
is when, for example, an issue actually resides in libvte, or GTK.
Again, there is a new official tag not-responsible, and the bug
will actually end up set to Invalid.

The final virtual state is No Action, which is for various reasons.
Sometimes other work has resolved an issue already, or the user was
using an old version, and the fix is already in trunk or released.
Again there is a new official tag no-action. These will then be put
in one of the following: Invalid, Fix Committed, or Fix Released,
depending on circumstance.

Our last Resolved state is the automatically set Expired one. This
can only be set by Launchpad when a bug is set to Incomplete, and has
been idle for 60 days. This is actually an on/off feature that is set by
the project, and applies project-wide. Currently this is not active for
Terminator bugs, but one day (when I get caught up, ha!) I might choose
to turn this on.




Available

The last state is Fix Released, indicating that there has been a
release containing a fix to the issue.

Of course this flow and states are not set in stone. A bug can be
brought out of Expired if necessary. Or back from In Progress to
Confirmed or Triaged if the assignee decides to stop working on
the bug for some reason.








Plugins

Ahem... Yeah... More coding...

Some Plugins may have room for improvement, or perhaps you have
an idea for a neat plugin no-one else has done.




Main Application Development

Oh come on... Coding? Again!

I see lots of people say how Terminator is really good, and it is,
but like anything, it could be better!

To give an idea, as of March 2017, revision 1760, there are around 100
wishlist items [https://bugs.launchpad.net/terminator/+bugs?field.searchtext=&orderby=-importance&search=Search&field.status%3Alist=NEW&field.status%3Alist=CONFIRMED&field.status%3Alist=TRIAGED&field.status%3Alist=INPROGRESS&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&field.status%3Alist=INCOMPLETE_WITHOUT_RESPONSE&field.importance%3Alist=WISHLIST&assignee_option=any&field.assignee=&field.bug_reporter=&field.bug_commenter=&field.subscriber=&field.structural_subscriber=&field.tag=&field.tags_combinator=ANY&field.has_cve.used=&field.omit_dupes.used=&field.omit_dupes=on&field.affects_me.used=&field.has_patch.used=&field.has_branches.used=&field.has_branches=on&field.has_no_branches.used=&field.has_no_branches=on&field.has_blueprints.used=&field.has_blueprints=on&field.has_no_blueprints.used=&field.has_no_blueprints=on].


Note

Just because an item is marked as wishlist, it doesn’t
mean that a great deal of thought has been put into the
appropriateness of the idea on my side. It may be impossible,
or not a good fit, or just plain bat-sh!t crazy. If you
want to pick up a wishlist item that looks like a lot of
work (especially if it makes fundamental changes to the
Terminator ethos) it’s probably best to check first that
your approach is good, and has a realistic chance of being
merged.



Some of these wishlist items are also in my own text file of “Things
to do” / “Big bag of crazy”, which as of March 2017, revision 1760,
looks like this:

Enhancements which may or may not have a wishlist item
======================================================
Completely new features
    Add libunity quicklist of saved layouts
        https://wiki.ubuntu.com/Unity/LauncherAPI#Python_Example
        http://www.techques.com/question/24-64436/Refreshing-of-Dynamic-Quicklist-doesn%27t-work-after-initialization
        http://people.canonical.com/~dpm/api/devel/GIR/python/Unity-3.0.html
        Possibly use the progress bar and or counter for something too.
    Add an appindicator menu for launching sessions.
    If we can figure out how to do arbritrary highlighting, perhaps we can get a "highlight differences" mode like used to exist in ClusTerm.
        This could also be limted to highlighting diffs between those in the same group.
    Synchronised scroll based on groups
    Triggers (actions) based on regex for received text
    A "swap" mode for drag and drop
    Encrypted dumping/logging to disk
    Remotinator commands to modify debug level / class / funcs, and switch trace on/off
    Allow custom commands to only show on particular profiles

Search
    Might be able to missuse the ClusTerm method of overwriting to "highlight" (gtk2 only)

Layouts
    Layout Launcher
        Could bind the shortcut as a global toggle to hide show
        Could save
            window position/size
            hidden status
            always on top
            pin to visible workspace
    Layout needs to save/load more settings
        Per layout?
            Group mode status (all, group, off)
            Split to this group
            Autoclean groups
        Per window
            always on top
            pin to visible workspace
        Per tab
        Per terminal
            Store the custom command and working directory when we load a layout, so making small changes and saving doesn't lose everything.
            It could be possible to detect the current command and working directory with psutil, but could be tricky. (i.e. do we ignore bash?)
    A per layout "save on exit" option to always remember last setup/positions etc. Probably requires above to be done first.
    A per layout shortcut launch hotkey

Missing shortcuts:
    Just shortcut:
        Context menu (in addition to Windows menu button - not always available on all keyboards)
        Group menu
        Open preferences
        Change group name
        Toggle titlebar visibility
        Equalise the splitters (siblings/siblings+children/siblings+parents,all)
        Zoom +receiver in/out/reset
        Zoom all in/out/reset
    New code:
        Open a shortcut help overlay (Ctrl-F1?)
        Insert tab text, titlebar text, group name value into terminal(s)
        Last terminal / tab / window(again to jump back to original) #1440049
        Limit broadcast group/all to current tab / window (toggle)
        Broadcast temporarily off when maximised or zoomed to single term (toggle)

Titlebar
    Add large action/status icons for when titlebar is bigger and/or HiPDI
    Improve the look/spacing of the titlebar, i.e. the spacing around/between elements

Tabs
    right-click menu replicating GNOME-Terminals (move left/right, close, rename)

Menus
    Add accelerators (i.e. "Shift+Ctr+O") might look too cluttered.

Preferences
    Profiles
        Add preselection to the profile tab
        Add filter to font selector to only show fixed width fonts
    Layouts
        Have changing widgets depending on what is selected in the tree
        Terminal title editable
        Button in prefs to duplicate a layout
        Ordering in list
        Working directory - add dialog too, see http://stackoverflow.com/questions/10868167/make-filechooserdialog-allow-user-to-select-a-folder-directory
    Keybindings
        Add a list of the default keybindings to the Preferences -> Keybindings window?
    Option for close_button_on_tab in prefs. (needs tab right-click menu first
    Option to rebalance siblings on a split (don't think children or ancestors make sense)
    Figure out how to get the tree view to jump to selected row for prefseditor

Plugins
    Give plugins ability to register shortcuts
    Custom Commands is blocking, perhaps make non-blocking

Drag and Drop
    LP#0768520: Terminal without target opens new window
    LP#1471009: Tab to different/new window depending on target

Major architectural
    Improve DBus interface, add coordination between sessions, i.e.:
        multiple DBus ports? register them with a master DBus session, be able to query these, etc
        be able to drive them more with command line commands, and not just from within own shell
        Remotinator improvements
    Abstract out the session/layout allowing multiple logical layouts in the same process to reduce resource used
        This is a big piece of work, as a lot of the Terminator class would need seperating out.
    Hide window should find the last focussed window and hide that. Second hit unhides and focusses it
        Add a power hide to hide all of shortcut bound instances windows
        Use the dbus if available to hide the current active window, then unhide it on second shortcut press
        If the dbus is available:
            The hide will go to the focussed instance, instead of the first to grab the shortcut
            Add a super power hide to hide all Terminator windows
            In both cases a second shortcut unhides whatever was hidden

Split with command / Inherit command/workdir/groups etc

Somehow make Layout Launcher, Preferences, & poss. Custom Commands singleton/borg (possibly use dbus)

When in zoomed/maximised mode
    Perhaps the menu could contain a quick switch sub menu, rather than having to Restore, right-click, maximise
    Shortcuts for next/prev,up/down/left/right, etc. How should they behave

All non main windows to be changed to glade files

For me the two different sets of next/prev shortcuts are a bit of a mystery.

Let window title = terminal titlebar - perhaps other combos. Some kind of %T %G %W substitution?





So as you can see, still lots of room for improvements, and plenty of
ideas if you are trying to find small starter tasks.




GTK2 Maintenance

The GTK2 version of Terminator has gone into deprecated mode as far as
I’m concerned. If someone wants to pick up the back-porting of fixes
they can contact me, and I’ll give them commit access on the GTK2
branch. It is better that any focus I can spare is spent on the GTK3
version.




GTK3 Port

Last coding one, I promise!

After some sterling work by Egmont Koblinger, one of the VTE
developers, he came up with a very large patch for rudimentary GTK3
support. A number of things were incomplete or broken, but it got it
far enough along that it was no longer an insurmountable cliff face.

After that I resolved to port fixes and features between the two
versions. For a time I managed this, but it got to the point where the
GTK3 port was better and more stable than the old GTK2 code, due to VTE
and GTK improvements that added features, and seems to have fixed many
(if not all) of the segfault crashes that would happen within the GTK2
libraries.

The port is pretty much complete. I hope we’ve fixed any regressions
and critical issues. There are a few minor tasks that don’t seem to be
urgent as far as I can see listed below. Feel free to look into these.
For the record, as of March 2017, with the gtk3 branch [https://code.launchpad.net/~gnome-terminator/terminator/gtk3] at revision
around 1760, these are the outstanding items:

Outstanding GTK3 port tasks/items/reviews/reimplementations etc.
================================================================
[    ]  Need to go through all the Gtk.STOCK_* items and remove. Deprecated in 3.10.
        Very low priority as won't be problem till GTK 4.0 (hopefully!)
[    ]  Homogeneous_tabbar removed? Why?
[    ]  terminal.py:on_vte_size_allocate, check for self.vte.window missing. Consequences?
[    ]  terminal.py:understand diff in args between old fork and new spawn of bash. Consequences?
[    ]  VERIFY(9)/FIXME(6) FOR GTK3 items to be dealt with
[    ]  Get the debian build stuff up to date and aligned with the GTK2 where appropriate
[    ]  LP#1521280 - Reimplement utmp option (for turning off somehow)





Now the GTK3 port is done there is also a long overdue port to
Python3, especially in light of some distributions trying to
eliminate Python2 from the base installs. Yes, Python2 will be with
us for a long time yet, but this should serve as a warning.

I also have some new items specifically for the GTK3 branch which I’m
still thinking about, but I’m not ready to declare. I suspect I might
get a bit of unwanted pressure if I were to mention these, so for now
they are under NDA. 😃




Docs for Devs

Here is a list of some useful sets of documentation collected together
for convenience:







	General


	Python
	https://docs.python.org/release/2.7/index.html


	GNOME Dev. Center
	https://developer.gnome.org/


	Bazaar DVCS
	http://doc.bazaar.canonical.com/en/


	Launchpad Help
	https://help.launchpad.net/


	GTK 3


	GObject Introspection
	https://wiki.gnome.org/Projects/GObjectIntrospection


	GObject
	https://developer.gnome.org/gobject/stable/


	PyGObject Introspection
	https://wiki.gnome.org/Projects/PyGObject


	PyGObject
	https://developer.gnome.org/pygobject/stable/


	Many PIGO autodocs
	http://lazka.github.io/pgi-docs/


	GDK3 Ref. Manual
	https://developer.gnome.org/gdk3/stable/


	GTK3 Ref. Manual
	https://developer.gnome.org/gtk3/stable/index.html


	Python GTK+ 3 Tutorial
	http://python-gtk-3-tutorial.readthedocs.org/en/latest/index.html


	VTE for GTK 3
	https://developer.gnome.org/vte/0.38/











          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _images/icon_terminator.png





_images/custom_commands.png
Top

Enabled | Name

Command

=
Enabled
Name.

Commana.

Cancel

oK

Cancel

Up
Down
Last
New
Eait

Delete

oK.





_images/basic_window.png
idiotevillage:~$ ||






_images/icon_gettinginvolved.png





_static/up.png





_images/icon_license.png





_static/down-pressed.png





_images/icon_layout.png





_images/grouping_04.png
"[E] idiot@village: ~ 000

i
idiotevillage:~s

idiotevillage:~






_images/prefs_layouts.png
Global Profiles | Layouts | Keybindings Plugins  About

splitters. Terminal childl Custom command

Working directory:

Add [ Remove || save

Help Close





_static/comment-close.png





_static/comment.png





_static/ajax-loader.gif





_images/prefs_profiles_compatability.png
Global | Profiles | Layouts Keybindings _Plug-ins About

Proile General Command Colours Background Scrolling | (Compatibiity

Note: These options may cause some applications to behave incorrectl. They are only here fo allow you 1o work
around certain applications and operating systems that expect difirent termina behaviour

Backspace key generates: | ASCII DEL -
Delete key generates: | Escape sequence -
Encoding: | Unicode UTF-8 -

Reset Compatibility Options to Defaults

Add || Remove

Help Close





_static/down.png





_images/prefs_profiles_command.png
Global | Profiles | Layouts Keybindings _Plug-ins About

Profile General | (Command | Colours Background  Scroling  Compatibilty

Run command as a login shell
Run a custom command instead of my shell

Custom command

When command exits: | Exit the terminal -

Add || Remove

Help Close





_static/plus.png





_images/prefs_plugins.png
Global Profiles Layouts Keybindings | Plugins | About

Plugin

InactivtyWaich

TestPlugin

ActhityWatch

TerminaiShot
LaunchpadCadeURLHandler
APTURLHandler

Logger

MavenPluginURLHandler
LaunchpadBugURLHandler

“This plug-in has no configuration options

Help Close





_images/prefs_keybindings.png
Global _Profiles
Name
broadcast_all
broadcast_group
broadcast_oft
close_term
close_window
copy

cycle_next
cycle_prev
edit_tab_title
edit_terminal_titie
edit_window_title
full_screen
go_down

go_lett

go_next

go_prev

go_ight

go_up

group_all
group_all_toggle
group_ta
group_tan_toggle
help
hide_window
insert_number
insert added

Help

Layouts | Keybindings | Plugins  About
Action

Broadcast key events to all
Broadcast key presses to group
Dont broadcast key presses
Close terminal

Close window.

Copy selected text

Focus the next terminal

Focus the previous terminal
Edit tab title

Edit terminal titie

Edit window title

Toggle fulscreen

Focus the terminal below
Focus the terminal left

Focus the next terminal

Focus the previous terminal
Focus the terminal right

Focus the terminal above
Group all terminals
Group/Ungroup all terminals
Group terminals in tab
Group/Ungroup terminals in tab
Open the manual

Toggle window visibility

Insert terminal number

Insert padded terminal number

Keybinding
AltA

Al

Alt+0
Shift+Ctri+w
Shift+Ctri+Q
Shift+Ctrk+C
CtriTab
Shit+Ctr+Tab
CivAlrA
CliAlX
iAW
F11
Alt+Down
Alt+Left
Shift+Ctrl+N
Shift+Ctrl+P
Alt+Right
AltUp
Super+G
Disabled
Super+T
Disabled

F1
Shift+Ctrl+Alt+A
Super+1
Suner+0

Close






nav.xhtml

    
      Table of Contents


      
        		Welcome to Terminator's documentation!


        		Licensing


        		Document history


        		Getting Started
          
          		The Context Menu


          		Navigating around
            
            		Click-able items


            


          


          		Changing the current layout
            
            		Using the splitters


            		Dragging and dropping a terminal


            		Using the keyboard


            


          


          		Resetting the terminal


          		The scrollbar and scrollback buffer


          		Search the buffer


          		Zooming the terminal


          		Setting Titles


          		Insert terminal number


          		Next/Prev profile


          


        


        		Preferences Window
          
          		Global
            
            		Behaviour


            		Appearance


            		Terminal Titlebar


            


          


          		Profiles
            
            		General


            		Command


            		Colours


            		Background


            		Scrolling


            		Compatibility


            


          


          		Layouts


          		Keybindings


          		Plugins


          		About


          


        


        		Layouts and the Layout Launcher
          
          		The Layout Launcher


          


        


        		The Grouping Menu
          
          		Manipulating terminal groups


          		Broadcasting input to multiple terminals


          		Insert terminal number


          


        


        		Plugins
          
          		Included plugins
            
            		Activity Watch


            		APT URL Handler


            		Custom Commands Menu


            		Inactivity Watch


            		Launchpad Bug URL Handler


            		Launchpad Code URL Handler


            		Logger


            		Maven Plugin URL Handler


            		Terminal Shot


            		Test Plugin


            


          


          		Third party plugins


          		Installing a plugin


          		Creating your own plugins
            
            		The basics of a plugin


            		URL Handlers


            		Context menu items


            		Wrap up


            


          


          


        


        		Advanced Usage
          
          		Command line options
            
            		General options


            		Window options


            		Shell options


            		Layout options


            		Custom Window Manager options


            		Debugging options


            


          


          		The Config file


          		Debugging


          		DBus


          		Remotinator


          


        


        		Frequently Asked Questions
          
          		Why...
            
            		...is there another terminal program called Terminator?


            		...write in Python? It's slow/bloated/bad?


            


          


          		How do I...
            
            		...make Terminator work like Quake style terminals?


            


          


          


        


        		Getting involved
          
          		Translations


          		Improve icons/artwork


          		Terminator action shots


          		Manual updates


          		Testing


          		Bugs
            
            		Bug handling


            


          


          		Plugins


          		Main Application Development


          		GTK2 Maintenance


          		GTK3 Port


          		Docs for Devs


          


        


      


    
  

_images/prefs_profiles_background.png
Global | Profiles | Layouts Keybindings _Plug-ins About

Profile General Command Colours | Background | Scroling  Compatibilty

© soid colour
Transparent background

Shade transparent background:

None Maximum

Add || Remove

Help Close





_images/grouping_01.png
"[E] idiot@villagy 000






_static/up-pressed.png





_images/layoutlauncher.png
Layout
default

Launch





_static/comment-bright.png





_images/prefs_about.png
Global Profiles Layouts Keybindings ~Plugins | [About

Help

The Manual

Homepage
Blog / News
Development

Bugs / Enhancements
Translations

Terminator

The robot future of terminals

“The goal of this project is to produce a useful tool for amanging
terminals. It is inspired by programs such as gnome-multi-term,
quadkonsole, etc. in that the main focus s arranging terminals in
grids (tabs is the most common default method, which Terminator
also supports)

Much of the behaviour of Terminator is based on GNOME
Terminal, and we are adding more features from that as time goes
by, but we also want to extend out in different directions with
useful features for sysadmins and other users. If you have any.
suggestions, please file wishlist bugs! (see left for the
Development link)

Close





_static/file.png





_images/launchpad_bugflow.png
Bug considered Open Bug considered Closed

Initial/New Investigation Accepted Resolved Available






_static/minus.png





_images/grouping_02.png
"[E] idiot@village: ~ 000

idiotevillage:n






_images/icon_prefs.png





_images/rebalance_05.png
"[=) idiot@village: ~ s 000

3]
idiotevillage:w~

-

idiotevillage:~$






_images/rebalance_02.png
"[E] idiot@villagy

B idiot@uillage
idiotevillage
s []

o
[idiotevillage:

o
[idiotevillage:

o
[idiotevillage:

o
[idiotevillage:

g idiot@uilage
[idiotevillage:~$






_images/prefs_profiles_general.png
Global | Profiles | Layouts Keybindings _Plug-ins About

Profile (General | Command _ Colours

Background _ Scrolling  Compatibility

Use the system fixed width font

Font: | Hack Regular 10

Allow bold text
Show itebar

Copy on selection

Rewrap on resize
Select-by-word characters:
cursor

Shape: | Block

Colour: @ Foreground

Blink

Add || Remove

Help

e

Terminal belt
- Titebar icon
Visual fiash

) Audible beep

) Window list flash

Close





_images/icon_faq.png





_images/rebalance_04.png
"[E] idiot@village: ~ 000

idiotevillage:n

idiotevillage
s []

=] i g
[idiotevillage:~s$

=] i

[idiotevillage:~$ |]

o i 2
[idiotevillage:~$ |]
\d\nt@v\\hge s

mmeuuage $






_images/debug_tab.png
"[E] /binbash 000

inatorlib/window.py:326)

ConfigBase: :get_iten: ConfigBase::get_item: title_hide_sizetext found in globals
: False (/home/steve/Development/terminator/terminator-gtk3-ssh/terminatorlib/co
nfig.py:726)

ConfigBase: :get_iten: ConfigBase::get_item: title_use_system_font found in globa
1s: True (/home/steve/Development/terminator/terminator-gtk3-ssh/terminatorlib/c
onfig.py:726)

ConfigBase: :get_iten: ConfigBase::get_item: title_inactive_fg_color found in glo
bals: #000000 (/home/steve/Development/terminator/terminator-gtk3-ssh/terminator
Lib/config.py:726)

ConfigBase: :get_iten: ConfigBase::get_item: title_inactive_bg_color found in glo
bals: #c@bebf (/home/steve/Development/terminator/terminator-gtk3-ssh/terminator
Lib/config.py:726)

ConfigBase: :get_iten: ConfigBase::get_item: title_inactive_fg_color found in glo
bals: #000000 (/home/steve/Development/terminator/terminator-gtk3-ssh/terminator
Lib/config.py:726)

ConfigBase: :get_iten: ConfigBase::get_item: title_inactive_bg_color found in glo
bals: #c@bebf (/home/steve/Development/terminator/terminator-gtk3-ssh/terminator
Lib/config.py:726)

ConfigBase: :get_iten: ConfigBase::get_item: show_titlebar found in profile defau
1t: True (/home/steve/Development/terminator/terminator-gtk3-ssh/terminatorlib/c
onfig.py:730)






_images/prefs_profiles_colors.png
Global | Profiles | Layouts Keybindings _Plug-ins About

Profile General Command | Colours|| Background  Scroling  Compatibilty

Foreground and Background

Use colours fom system theme
Buitin schemes: | Grey anblack =
Text colour

Background colour: | [N

Palette
Builtin schemes: | Ambience -

Colour paette.

Add || Remove

Help

Close





_images/broadcast_02.png
[ idiot@uvillage: ~ 000

2]
idiotevillage:~$ test

B E =]
idiotevillage:~$ test]] [idiotevillage:~s test]]






_images/prefs_global.png
(Global | Profiles Layouts Keybindings Plug-ins About

Behaviour

Window state: | Normal -

Aways on top
Show on al workspaces
Hide on lose focus
Hide from taskbar
Window geometry hints

DBus server

Appearance
Extra Styling (Theme dependant)

Terminal separator size: 1 ———

80% e —

Unfocused terminal font brightness:

Window borders

Terminal Titiebar
Focused Inactive Receiing

Font colour [ ]

Background: | [

Help

Mouse focus: Click to focus -
Broadcast default: | Group -

PUTTY style paste

Smart copy
Re-use profiles for new terminals
Use custom URL handler

Custom URL handler:

Tab position: | Left -

Tabs homogeneous

) Tabs scrol buttons

Hide size from tle
Use the system font

Font: | Liberation Sans Regular 10

Close





_images/small_example.png
Monitor 060

=] !
2.00 Ihtop 189k 10031 | > Sat Jul 18 03:12:38 2015
Ihtap 156 1948 226B12.00 2.00 >
Ihtap 3k 11471 I > [eisksize 1588428800
6.00 Ihtap 189 7181 | > frun_resds 705947
luatch 292 3801 91812.00 1.00 > frum_urites 1189749
Ihtap 189 11171 osi1200 1200 > finvalid_io 0
Ihtap 189k 10191 | > frotifyfree 1483220
Iterninator 3116 12 | > feeropages 24650
1.00 Ihtop 189 6571 | > [oriedatasize 679845888
8.00 Ihtop 189k 11691 | > [eowerdatasize 268862247
Zio/total- ~---nost-expensive ret/total- cpkt/total->  flien used_total 326311936

read _urit|____i/o process | read _uritireads writs|util| Jave _conpr_ratio R
310 Iateh 292, 3790 (1176 115.011504 nen_overhead 217
44,0 Ihtop 1891 103182108 134,41 4244 Jused_zran_space 20 I
2]

LoD 1 Tasks: 169: 1 rumning

ERAI 1 Load aversee: 0,36 0,40

ER 1 Uptine: 8 days, 05:53:35

a o 1

Henl 1111 1

Supll 111 1

.
shoddy
5012 shoddy

376 cldsp 1564 §
452M 72400 12436 §
78 491 32912 §

8497 shoddy 6635 2908 1336 R

4% shoddy 11336 5956 2564 5

Saba ooy 534 20836 176808 S

32:41.72 /uer fbin ibus—daomon ——dzenenize ——xin

413557 Juor indper] foer foin/shatier

2133142 Juor i/ ore 10 —eest. Seak0 ~auth /var/run/lightdn/rost/:0 noliste

0105.3 fiap

0308128 7uoF poin/puthon fusr fbindstat. - ~-top-io -d --disk-tps —-disk-util -
T oinothon /et /bin/terminator u -1 tenitor

W oNiit






_images/broadcast_01.png
"[E] idiot@village: ~

i
idiotevillage:~$ test

000

idiotevillage:~






_images/inactivitywatch_notification.png





_images/dragterminal_02.png
[ idiot@village: ~ D 000

i
idiotevillage:~s

=]

idiotevillage [idiotevillage:~$ []

s [] —

idiotevillage:ns ||

idiotevillage:ns []

=] i
[idiotevillage:~s$






_images/rebalance_03.png
"[E] idiot@village: ~

&
idiotevillage:~

idiotevillage
s []

000

B i g 1
[idiotevillage:~s$

o
[idiotevillage:

i g 1

$ [
=) i 1

[idiotevillage:~$ |]

[T i ag 1

[idiotevillage:~$ |]

o
[idiotevillage:~$






_images/context_open_debug_tab.png
Split Horizontally.
Split Vertically
Open Tab






_images/icon_grouping.png





_images/activitywatch_notification.png
) -






_images/dragterminal_01.png
=

idiot@village: ~

idiotavillage:~$ ||

idiotevillage
s 1]

idiotevillage:ns ]
idiotevillage:ns ]
idiotevillage:s ]

\dmt@v\\hge ~$






_images/icon_history.png
v
‘B |m





_images/large_example.png
Local Shells, for local people!

sep'. 'setegid', 'seteuid’, 'setgid', 'setgroups'. 'setpel 02:17:01 pinpoint CRONL7882]: (root) CMD  cd / &a run-parts --report /sto/oron.hourly) [Hlivelog progran='subsurface ' versior

i, 'setresgid’, 'setresuid’, 'setreuid’, 'setsid’, 'setu 02:25:01 pinpoint CRONL79371: (root) CMD (command -v debian-sal > /dev/null se debian-sal 1 1) [Csettings>

e, 'spaunlp’, 'Spaunlpe’, 'spauny’. ‘spaunve’, 'spawnve’. 02133105 pinpoint kernel: [710038,459235] atkbd serio: Spurious NAK on isa0060/seric0, Sone progran [</settings>

stat_float tines', 'stat result', 'statvfs', 'statvfs_resn 02135102 pinpoint CRONLB0Z3]: (root) CMD (command -v debian-sal > /dev/null se debian-sal 1 1) <cives>

ink’, “sys'. 'susconf’. 'susconf_nanes’, 'sisten’. 'tcgetp 02:45:01 pinpoint CRONLB0BA]: (root) CMD (command -v debian-sal > /dev/null se debian-sal 1 1) <trip date='2014-09-10" tine='18:57:30'>

wenan'. 'tines’, 'twpfile’. 'twnam', 'Ctuname’, ‘unask'. 02155103 pinpoint CRONLE353]: (root) CMD (command -v debian-sal > /dev/null se debian-sal 1 1) <ciive nomber='2" date='2014-09-10" tine='18:57:30" duration=
1
1

46106 nin'>
setenv’, ‘urandon’, ‘utine’, ‘walt', 'wait3', ‘vaitd'. 'ua 03:05:01 pinpoint CRONLB4SA]: (root) CMD (command -v debian-sal > /dev/null se debian-sal 1 1) <location gps='35,171894 24,410597" />

) 03:15:01 pinpoint CRONLES73]: (root) CMD (command -v debian-sal > /dev/null se debian-sal 1 1) <eylirder size='1i.1 1 warkpressure='207.0 bar' deseriptions'unknown’ />
>>> dir(sys) 03:17:01 pinpoint CRONLE383]: (root) CMD ¢ cd / sa run-parts --report /sto/oron.hourly) <divecomputer models'nanually added dive's

[*__displaghook - 03:25:01 pinpoint CRONL9100]: (root) CMD (command -v debian-sal > /dev/null se debian-sal 1 1) <lepth nax='15.0 0 13671 0’ />

*_clear_tupe_cache ', 03:35:01 pinpoint CRONL9166]: (root) CMD (comnand -v debian-sal > /dev/null se debian-sal 1 1) <sanple ”

ctfrans’, : ", Tapi_version'. 'arey 03138100 pinpoint kernel: [713933,451607] atkbd seric: Spurious NAK on isa0060/seric0, Sone progran <sanple . ”

es'. 'buteorder’, ‘call tracing’, ‘callstats’, ‘copuright’ 03:39:49 pinpoint kernel: [714041.732157] atkbd serio: Spurious NAK on isa0060/seric0. Sone progran <sanple . ”

_urite_bytecade') 'exc_clear’, 'exc_infa’, 'exc_tupe', 'ex 03341142 pinpoint kernel: [714154.673994] atkbd seric: Spurious NAK on isa0060/seric0. Sone progran <sanple . 7

<. Texecutable', 'exit'. 'flags'. 'Float_info'. float_re 03:45:01 pinpoint CRONLS278]: (root) CMD (command -v debian-sal > /dev/null se debian-sal 1 1) <sanple . 7

terval’, “getdefaultencoding’, 'getdlopenflags'. ‘getfiles 03:55:01 pinpoint CRONLS398]: (root) CMD (command -v debian-sal > /dev/null se debian-sal 1 1) <sanple . KIS
ofile’. ‘getrecursionlinit’. ‘getrefcount’. ‘getsizeof’. | 04:05:01 pinpoint CRON[3442]: (root) CMD (command -v debian-sal > /dev/null se debian-sal 1 1) </diveconputer>
", lohg_infa'. ‘maxint', 'maxsize', 'maxunicods'. 'metép 04315103 pinpoint CRONLS503]: (root) CMD (command -v debian-sal > /dev/null se debian-sal 1 1) <livecomputer nodel='nanually acded dive’ dates'2014-09-10" tine='18:59:20'>

- ‘path_hooks’, 'path_inporter_cache', ‘platforn’, 'prefi 04:17:01 pinpoint CRONLS510]: (root) CMD ¢ cd / s& run-parts --report /sto/oron.hourly) <epth nax='15.0 0’ nean='13.671 n' />
kuarning’, ‘pudebug’, setcheckinterval', 'setdlopenflags’ 04:25:01 pinpoint CRONLS526]: (root) CMD (command -v debian-sal > /dev/null se debian-sal 1 1) Csample tine='0:00 nin' depth='0.0 ' />
cursionlinit’, 'settrace’, 'stderr’, 'stdin’, 'stdout’, 's 04:35:01 pinpoint CRONLS5671: (root) CHMD (comnand -v debian-sal > /dev/null se debian-sal 1 1

Sy i-int s uarnopt ions '] 0414501 pinpoint CRONLS7681: (root) CHMD (command -v debian-sal > /dev/null se debian-sal 1 1
>

=] @pinpoint: ~/Developm: dy@pinpoint: rminator 114x : hinxdoc/sourc
Addl Libunity ouicklist of saved layouts shaddy sboddy 182 Feb 23 12:20 new_branch_gtk3

https://uiki,ubuntu.con/Unity/LauncherAPT#Python Exanple shoddy sboddy 4096 Feb 20 2014 terminator-0.96

http://uuy. techaues ,con/auest ion/24-64436 /Ref reshing -of -Tunanic shoddy sboddy _ 4096 Apr 3 2014 terminator-0.97

http://people.canonical .con/ dpn/api/devel /GIR/python/Unity-3.0 shoddy sboddy 300854 Jul 13 13:33 terninator_0.97ppa3_all.deb

Possibly use the progress bar and o counter Far something tod. shoddy sboddy 984 Jul 13 13:32 terninator_0.97"ppa3 dsc .. inager: ines/loza.pre
shoddy shoddy 62507 Jul 13 13:33 terninator 097 ppa3_i386 Jbuild salign: right
Layout. needs to save/load more settings shoddy sboddy 1245 Jul 13 13:33 terninator 097 ppa3_i386 changes

[DONE] per window - last_active_tern shoddy shoddy 3043535 Jul 13 13132 terninator_0.97°ppa3. tar g2 This is the beginnings of a guide to Terninator. Sonetines it is not aluays clear
[DONET per tob - last_active_tern shoddy shoddy 4096 Jul 13 13:32 terminator_build st hou nang Tittle shorteuts and Features there are in Terminator, This guide
(Far these tuo T think T need to assien terminals a uuid oth shoddy shoddy 4096 Feb 18 14158 terminator_build_pkgs Jropes to reduce the confusion,
Lot save, it's difficult/inpossible to knou the nane of shoddy shoddy 2522 Feb 20 17150 terninator e5n
terninal: they haven't been allocated wst) shoddy shoddy 4096 Jul 12 04148 terminator-gtk3-http
Group mode status (all, graup, off) shoddy shoddy 4096 Apr B 19:01 terminator-gtk3-http-800
terninal title editable in the preferences (maube others too) shoddy shoddy 4096 Jul 15 02144 terminator-gtk3-ssh
[DONE - unless T nisunderstood oun note] Should save it's own p shoddy shoddy 4096 Jun 23 02132 terminator-gtk3-ssh-checkout.

shoddy shoddy 4096 Jul 12 22118 terminator-trunk-http ot its simplest Terminator is a terminal emulator like xtern. gnome-terninal

Split with camnand / Inherit comnand/warkdir/groups ste shoddy shoddy 4096 Jul 10 20112 terminator-trunk-http-clean Jkonsale, etc. At its nost complex it lots you Flu... metaphorically at least.
shoddy shoddy 4096 Jul 2 21:16 terminator—trunk-ssh Take = look at the Following list:

Sanehow nake Layaut Launcher, Preferences, & poss. Custan Comnands sing shoddy shoddy 4096 Feb 18 14137 terminator-work

Soodds Shodds 409 Tui 15 03104 testers .. sisebarss Fron the Siple
Custon Comnands 15 blocking, perhaps nake nen-blocking Soodds Shodds 4098 Nay 21 2013 testers._logers
T Shocy ooy 376 Jul 11 0312 update.branches T a———
boiiapanpoint -+ eve Lopnert /et ninators 15 ] - 61 14330

oinpoint:
0 Pdc| 2548 286BI O 688 1043

LoD 23,071 Tasks: 187: 2 rumning o1l 0 "ol 0 7% 1210

ERI 230241 Load aversee: 0.37 0,41 0,36 0 skl 0 0l 0 571 859

ERI 81471 Uptine: 8 days, 07:38:53 -dlsk/total- -net/total- —--p

a 15.5%1 idl uai hiq si recy _send

MenCLLLLLLLLNNNNNTUEEEEE 1] 12493/3023H81

L 893/3048HB1

ageM 85348 5:19.75 /usr/bindperl Jusr/bin/shutter
788N 452 2h37133 /usr/bin/ ~core 10 -seat seat0 -auth /var/run/
5760 2128 012562 htop
202M 42376 0127139 /usr/bin/puthon /usr/bin/terninator -u -1 defau
65376 21808 34123126 /usr/bin/ ibus-daenon --dsenonize ~-xin
2E9M 47372 6121181 gnone-panel
5244 1956 0141189 dbus-daenon -~Fork --session --address=unix:abs
5184 88412 36:53.9 /usr/bin/puthan /use/Lib/puthen2.7/dist -package
271N 5068 4147112 netacity

Hint: If you want to see uour . Files. say sa in the Conflguration dialog. 3101 1589 0139117 nautilus -

sboddy@pinpoint ;s . 007628 1:26.54 /usr/Lib/1386-Linux-gnu/banf /banfdaenon
1 e AT SR 6 7IIETE o f BUR 1 £ N 0N






_images/window_breakdown.png





_images/icon_gettingstarted.png





_images/split_window.png
"[E] idiot@village: ~ 000

3]
idiotevillage:~

[idiotevillage:~$






_images/rebalance_01.png
"[E] idiot@village: ~ 000

&
idiotevillage:~s

\-ToveTEgE
idiot@village
s (]

diotevillage:

fdiotevillage:






_images/icon_plugins.png





_images/plugins_links.png
This is a test using lp:terminator/gtk3 to demonstrate custom URL handlers
idiotevillage:~$





_images/grouping_03.png
"[E] idiot@village: ~ R 000

None

o Phi
Remove group Phi
Remove all groups

Close group Phi

Broadeast off
Broadcast all

o Broadcast group =

Splt o this group. idiotevillage:~$ ||

+ Autaclean groups
Insert terminal number

Insert padded terminal number






_images/icon_advanced.png





_images/rebalance_06.png
=) idiot@village: ~ R 000

idiotevillage:~

uimtevulage =3

idiotevillage
s []






_images/broadcast_03.png
"[E] idiot@village: ~ 000

i
idiotevillage:~$ test

idiotevillage:~






_images/search.png
"[E] idiot@villagy

Crw-rv-ru-
cru-
drwxr-xr-x
cru-

Crw-rv-ru-

R R R R N R R B R R e e e e e

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

: Idev

dialout
dialout
dialout
dialout
dialout
dialout
root
root
root
root
root
root
root
root
vboxusers
tty

332

332

332

332

332

tty

NNNNNNN

11
1

11
11
11
11
11
11

1
1
1
1
1
1
£
1

11
11
11
11
11
11

ttysa
ttyss
ttyse
ttys?
ttyss
ttys9
uhid
uinput
urandom
userio
val
vboxdry
vboxdrvu
vboxnetctl
vboxusb
ves
vesl
ves2
ves3
vesa
vess
ves6

060






_images/prefs_profiles_scrolling.png
Global | Profiles | Layouts Keybindings _Plug-ins About

Proile General Command Colours Background | (Scrolling | Compatibilty

Scrollbaris: | On the right side v

Scroll on output

Scroll on keystroke

Infinite Scrollback

Scroliback: [ 500 =+ nes

Add || Remove

Help Close





